期刊文献+

基于半监督学习的行为建模与异常检测 被引量:30

Behavior Modeling and Abnormality Detection Based on Semi-Supervised Learning Method
下载PDF
导出
摘要 提出了一种基于半监督学习的行为建模与异常检测方法.该算法包括以下几个主要步骤:(1)通过基于动态时间归整(DTW)的谱聚类方法获取适量的正常行为样本,对正常行为的隐马尔可夫模型(HMM)进行初始化;(2)通过迭代学习的方法在大样本下进一步训练这些隐马尔可夫模型参数;(3)以监督的方式,利用最大后验(MAP)自适应方法估计异常行为的隐马尔可夫模型参数;(4)建立行为的隐马尔可夫拓扑结构模型,用于异常检测.该方法的主要特点是:能够自动地选择正常行为模式的种类和样本以建立正常行为模型;能够在较少样本的情况下避免隐马尔可夫模型欠学习的问题,建立有效的异常行为模型.实验结果表明,该算法与其他方法相比具有更高的可靠性. A simple and efficient method based on semi-supervised learning technique is proposed for behavior modeling and abnormality detection. The method is composed of the following steps: (1) Dynamic time warping (DTW) based spectral clustering method is used to obtain a small set of samples to initialize the hidden Markov models (HMMs) of normal behaviors; (2) The HMMs' parameters are further trained by the method of iterative learning from a large data set; (3) Maximum a posteriori (MAP) adaptation technique is used to estimate the HMMs' parameters of abnormal behaviors from those of normal behaviors; (4) The topological structure of HMM is finally constructed to detect abnormal behaviors. The main characteristic of the proposed method is that it can automatically select the number of normal behavior patterns and samples from the training dataset to build normal behavior models and can effectively avoid the running risk of over-fitting when the HMMs of abnormal behaviors are learned from sparse data. Experimental results demonstrate the effectiveness of the proposed method in comoarison with other related works in the literature.
出处 《软件学报》 EI CSCD 北大核心 2007年第3期527-537,共11页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.60303021(国家自然科学基金) the National HighTech Research and Development Plan of China under Grant No.2005AA118020(国家高技术研究发展计划(863))
关键词 行为建模 异常检测 半监督学习 隐马尔可夫模型 计算机视觉 behavior modeling abnormality detection semi-supervised learning HMM (hidden Markov models) computer vision
  • 相关文献

参考文献1

二级参考文献16

  • 1[1]Collins T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):745~746
  • 2[2]Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing, 2000, 18(9): 105~135
  • 3[3]Howarth R J, Hilary B. A analogical representation of space and time. Image and Vision Computing, 1992, 10(7): 467~478
  • 4[4]Andre E, Herzog G, Rist T. On the simultaneous interpretation of real world image sequences and their natural language description: The system soccer. In: Proceedings of the ECAI-88, Munich, 1988. 449~454
  • 5[5]Schaefer K, Haag M, Theilmann W, Nagel H. Integration of image sequence evaluation and fuzzy metric temporal logic programming. In: Habel C, Brewka G, Nebel B eds. Advances in Artificial Intelligence. Lecture Notes in Computer Science,1303, New York:Springer, 1997. 301~312
  • 6[6]Brand M, Kettnaker V. Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 844~851
  • 7[7]Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition. Image and Vision Computing, 1996, 14(8): 609~615
  • 8[8]Johnson N, Galata A, Hogg D. The acquisition and use of interaction behaviour models. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring, MD: IEEE Computer Society Press, 1998. 866~871
  • 9[9]Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~757
  • 10[10]Sumpter N, Bulpitt A. Learning spatio-temporal patterns for predicting object behavior. Image and Vision Computing, 2000, 18(9):697~704

共引文献14

同被引文献256

引证文献30

二级引证文献340

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部