期刊文献+

混沌背景中微弱谐波信号检测的SVM方法 被引量:11

Detection of weak harmonic signal embedded in chaotic noise using SVM
下载PDF
导出
摘要 为了提高混沌背景下的微弱谐波信号检测能力,提出了一种提取混沌背景中微弱谐波信号的支持向量机(support vector machines,SVM)方法。该方法的突出特点是针对小样本或嵌入维数未知的情况,建立混沌噪声的一步预测模型,抑制噪声对混沌背景信号预测的影响,起到预滤波作用,然后从预测误差中提取微弱谐波信号。实验结果表明,该方法具有比传统RBF神经网络预测方法更强的稳健性和泛化性,在信噪比(SNR)为-47.931dB时仍可检测出强混沌中的微弱谐波信号。 In order to detect weak harmonic signal vector machine (SVM) is proposed, which is used embedded in noisy chaotic background, the method of support to extract weak harmonic signal under chaotic background. The outstanding feature of the method is building one-step prediction model of the chaotic noise ( including white or colored noise) for small sample or unknown embedded dimension situation. The model can suppress the influence of noise on the prediction of chaotic background signal, and provide pre-filtering function, then it extracts weak harmonic signal from predicted error. Experimental result shows that comparing with conventional RBF neural network prediction method, SVM method has stronger robustness and generalization ability. The method can detect weak harmonic signal when signal-noise-radio (SNR) is as low as -47. 931 dB.
机构地区 西安科技大学
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第3期555-559,共5页 Chinese Journal of Scientific Instrument
基金 陕西省自然科学基金(2004JC12)资助项目
关键词 微弱信号检测 混沌 支持向量机 预测模型 重构空间 weak signal detection chaos SVM prediction model reconstruction attractor
  • 引文网络
  • 相关文献

参考文献10

  • 1李月,石要武,马海涛,杨宝俊.湮没在色噪声背景下微弱方波信号的混沌检测方法[J].电子学报,2004,32(1):87-90. 被引量:43
  • 2HAYKIN S,LI X B.Detection of signals in chaos[J].Proceeding of the IEEE,1999,85(1):95-122.
  • 3林红波,李月,杨宝俊.检测混沌背景中微弱正弦信号的神经网络方法[J].仪器仪表学报,2005,26(1):36-40. 被引量:6
  • 4DONG J X,CHING Y S,ADAM K.Fast SVM train algorithm[J].International Journal of Pattern Recognition and Artificial Intelligence,2003,17(3):367-384.
  • 5崔万照,朱长纯,保文星,刘君华.基于模糊模型支持向量机的混沌时间序列预测[J].物理学报,2005,54(7):3009-3018. 被引量:29
  • 6TAY F E H,CAO L J.Modified support vector machines in financial time series forecasting[J].Neurocomputing,2002,48:847-861.
  • 7DAVID V,SáNCHEZ A.Advanced support vector machines and kernel methods[J].Neuroeomputing,2003,55:5-lO.
  • 8CHERKASSKY V,YUNQIAN M.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17:113-126.
  • 9SMOLA A.Regression estimation with support vector learning machines[D].Munchen:Technische University Munehen,1996.
  • 10SMOLA A.A tutorial on support vector regression[R].NC-TR-98-030,Royal Holloway college,University of London,UK,1998.

二级参考文献22

共引文献75

同被引文献133

引证文献11

二级引证文献95

;
使用帮助 返回顶部