期刊文献+

基于Kalman滤波理论的运动目标检测新方法 被引量:15

New method for detecting of moving targets based on Kalman filter theory
下载PDF
导出
摘要 该文研究了基于Kalman滤波理论的渐消记忆最小二乘法在图像背景重建中的应用,并将它应用在复杂背景的图像序列中,实现对运动目标的自动检测。首先用渐消记忆最小二乘法对复杂背景进行预测和更新,然后把当前帧与预测的背景模板做差分运算,最后采用自适应阈值分割技术实现对目标的自动分割。文中通过对序列图像的仿真,讨论了最小二乘法的存在问题,改进及适用情况,干扰的消除。试验结果表明,该方法具有很强的实用性。 The fading memory recursive least-squares based on Kalman filter is applied to rebuild image background. This method is used for detecting moving targets in the image sequence of clutter background. First, the rebuilt algorithm is adopted to predict and update the image background. And then a difference image can be obtained by subtracting the current frame from the predicted background. At last, the moving targets are automatically segmented by selecting an adaptive threshold. The problems which exist in the fading memory recursive least-squares, the improvement mad the elimination of disturbance are discussed by experiment. Experimental results are given to demonstrate the effectiveness and practicality of the method.
作者 任臣 张覃平
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第4期7-11,共5页 Opto-Electronic Engineering
基金 国家863高技术项目
关键词 KALMAN滤波 背景预测 自适应闽值选择 运动目标检测 Kalman filter Background prediction Adaptive threshold selection Moving targets detection
  • 引文网络
  • 相关文献

参考文献7

二级参考文献24

  • 1魏平.光学Hadamrd编码技术的研究[M].北京:北京理工大学,1984..
  • 2[1]Kuk-Jin Yoon,In-So Kweon. Moving Object Segmentation Algorithm for Human-like Vision System[C].In:1st International Workshop on Human-friendly Welfare Robotic Systems,2000-01
  • 3[2]Demin Wang. Unsupervised Video Segmentation Based on Watershed and Temporal Tracking[J].IEEE Transactions on Circuits and Systems for Video Technology, 1998 ;8: 539~546
  • 4[3]J C Choi,S W Lee,S D Kim. Spatio-temporal video segmentation using a joint similary measurc[J].IEEE Transactions on Circuits and Systems for Video Technology, 1997 ;7:279~286
  • 5[4]Thmos Meier King,N Ngan.Automatic Segmentation of Moving Objects for Video Object Plane Generation[J].IEEE Transactions on Circuits and systems for Video Technology, 1998; 8(5) :525~538
  • 6[5]A Neri,S Colonnese,G Russo et al. Automatic moving object and background separation[J].Signal Processing,1998;66:219~232
  • 7[6]R Mech,M Wollborn. A Noise Robust Method for Segmentation of Moving Objects in Video Sequences[C].In:Proc International Conference on Acoustics,Speech,and Signal Processing 1997(ICASSP 97),Munich ,Germany, 1997-04
  • 8[7]F Moscheni,S Bhattacharjee,M Kunt.Spatialtemporal segmentation based on region merging[J].IEEE Transaction on Pattern analysis and machine intelligence, 1998 ; 20: 897~915
  • 9[8]M Wollborn,R Mech. Refined procedure for objective evaluation of video generation algorithms[S].Doc ISO/IEC JTC1/SC29/WG11 M3448,1998-03
  • 10[9]A Neri et al. Automatic Moving Object and background Separation[J].Signal Processing, 1998 ;66:219~232

共引文献151

同被引文献136

引证文献15

二级引证文献81

;
使用帮助 返回顶部