期刊文献+

一种更简化而高效的粒子群优化算法 被引量:336

A Simpler and More Effective Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对基本粒子群优化(basic particle swarm optimization,简称bPSO)算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策略加以改进,提出了简化粒子群优化(simple particle swarm optimization,简称sPSO)算法、带极值扰动粒子群优化(extremum disturbed particle swarm optimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(extremum disturbed and simple particle swarm optimization,简称tsPSO)算法.sPSO去掉了PSO进化方程的粒子速度项而使原来的二阶微分方程简化为一阶微分方程,仅由粒子位置控制进化过程,避免了由粒子速度项引起的粒子发散而导致后期收敛变慢和精度低问题.tPSO增加极值扰动算子可以加快粒子跳出局部极值点而继续优化.对几个经典测试函数进行实验的结果表明,sPSO能够极大地提高收敛速度和精度;tPSO能够有效摆脱局部极值点;以上两种策略相结合,tsPSO以更小的种群数和进化世代数获得了非常好的优化效果,从而使得PSO算法更加实用化. The basic particle swarm optimization (bPSO) has some demerits, such as relapsing into local extremum, slow convergence velocity and low convergence precision in the late evolutionary. Three algorithms, based on the simple evolutionary equations and the extrenum disturbed arithmetic operators, are proposed to overcome the demerits of the bPSO. The simple PSO (sPSO) discards the particle velocity and reduces the bPSO from the second order to the first order difference equation. The evolutionary process is only controlled by the variables of the particles position. The extremum disturbed PSO (tPSO) accelerates the particles to overstep the local extremum. The experiment results of some classic benchmark functions show that the sPSO improves extraordinarily the convergence velocity and precision in the evolutionary optimization, and the tPSO can effectively break away from the local extremum, tsPSO, combined the sPSO and tPSO, can obtain the splendiferous optimization results with smaller population size and evolution generations. The algorithms improve the practicality of the particle swarm optimization.
作者 胡旺 李志蜀
出处 《软件学报》 EI CSCD 北大核心 2007年第4期861-868,共8页 Journal of Software
关键词 进化计算 群体智能 粒子群优化 极值扰动 evolutionary computation swarm intelligence particle swarm optimization disturbed extremum
  • 相关文献

参考文献3

二级参考文献17

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6): 39-42.
  • 3Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems [M]. New York: Oxford Univ Press, 1999.
  • 4Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [A]. Proc 2001 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2001: 81-86.
  • 5Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc. IEEE Int. Conf. Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995,1942-1948.
  • 7Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems [A]. Intelligent Technologies: from Theory to Applications [C]. Amsterdam: IOS Press, 2002. 214-220.
  • 8Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing, 2002, 1(2-3): 235-306.
  • 9Dautenhahn K. Book review: swarm intelligence [J]. Genetic Programming and Evolvable Machines, 2002, 3(1): 93-97.
  • 10Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [A]. Proc 1999 Congress Evolutionary Computation [C]. Piscataway, N J: IEEE Press, 1999:1951-1957.

共引文献595

同被引文献2751

引证文献336

二级引证文献2302

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部