摘要
本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.
A novel method for solving fractional order integro - differential equations is presented in this paper. Based on Taylor's expandsion of the unknown function, the fractional order integro- differential equation can be converted to a system of linear algebraic equations for the unknwon function and its derivatives up to n order. The effectivenss of this method is illustrated by several examples.
出处
《数学理论与应用》
2007年第1期88-91,共4页
Mathematical Theory and Applications
关键词
泰勒多项式
分数阶
积分微分方程
taylor's polynomials fractional order integro-differential equations