期刊文献+

多目标混合进化算法及其在经济调度中的应用 被引量:9

Multiobjective Hybrid Evolutionary Algorithm for Economic Load Dispatch
下载PDF
导出
摘要 鉴于环境保护的要求,对于经济调度问题,需同时考虑环境要求、发电费用等多个目标。提出一种基于进化规划(evolutionary programming,EP)和粒子群优(particle swarm optimization,PSO)的多目标混合进化算法(multi-objective evolutionary programming and particle swarm optimization,MOEPPSO),MOEPPSO采用了EP的变异操作,用来抑制PSO的快速收敛所带来的种群早熟问题,而PSO的记忆、协作能力则弥补了EP收敛速度慢的缺点。此外,MOEPPSO应用自适应网格算法对外部库中的Pareto解集进行调整,对一个30节点IEEE系统进行计算,结果显示MOEPPSO在获得最优Pareto解集、降低计算复杂度、提高收敛效率等方面具有很强的优越性。 Due to the requirement of environment protection, while coping with the economic power dispatch problem, the competing and non-commensurable emission, fuel cost objectives should be considered simultaneously. A multi-objective hybrid evolutionary algorithm based on evolutionary programming (EP) and particle swarm optimization (PSO), named MOEPPSO, is presented for this problem. The mutation operator in EP effectively restrains the prematurity phenomenon of PSO aroused by the fast convergence, while the memory and collaboration characteristics of PSO help EP to converge faster. Furthermore, the adaptive grid algorithm is applied to MOEPPSO. The effectiveness of the proposed algorithm is validated with the IEEE 30--bus system, and the results demonstrate the better Pareto front, the computation complexity reduction and the convergence efficiency improvement of the proposed algorithm.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2007年第2期66-72,共7页 Proceedings of the CSU-EPSA
关键词 进化规划 粒子群优 西格码方法 自适应网格算法 多目标混合进行算法 evolutionary programming (EP) particle swarm optimization (PSO) Sigma method adaptive grid algorithm multi-objective evolutionary programming and particle swarm optimization(MOEPPSO)
  • 相关文献

参考文献17

  • 1李彩华,郭志忠,樊爱军.电力系统优化调度概述(I)——经济调度与最优潮流[J].电力系统及其自动化学报,2002,14(2):60-63. 被引量:20
  • 2Elkeib A A,Ma H,Hart J L.Economic-dispatch in view of the clean-air act of 1990[J].IEEE Trans on Power Systems,1994,9(2):972-978.
  • 3Granelli G P,Montagna M,Pasini G L,et al.Emission constrained dynamic dispatch[J].Electric Power Systems Research,1992,24(1):55-64.
  • 4Farag A,Albaiyat S,Cheng T C.Economic load dispatch multiobjective optimization procedures using linear-programming techniques[J].IEEE Trans on Power Systems,1995,10(2):731-738.
  • 5Chang C S,Wong K P,Fan B.Security-constrained multiobjective generation dispatch using bicriterion global optimization[J].IEE Proceedings-Generation Transmission and Distribution,1995,142(4):406-414.
  • 6Yokoyama R,Base S H,Morita T,et al.Multiobjective generation dispatch based on probability security criteria[J].IEEE Trans on Power Syatems,1988,3(1):317-324.
  • 7Huang C M,Yang H T,Huang C L.Bi-objective power dispatch using fuzzy satisfaction-maximizing decision approach[J].IEEE Trans on Power Systems,1997,12(4):1715-1721.
  • 8Das D B,Patvardhan C.New multi-objective stochastic search technique for economic load dispatch[J].IEE Proceedings Generation,Transmission and Distribution,1998,145(6):747-752.
  • 9Abido M A.Environmental/economic power dispatch using multiobjective evolutionary algorithms[J].IEEE Trans on Power Systems,2003,18(4):1529-1537.
  • 10Eberchart R,Kennedy J.A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43.

二级参考文献5

共引文献19

同被引文献113

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部