期刊文献+

二阶非自伴两点边值问题Galerkin有限元后处理超收敛解答计算的EEP法 被引量:27

An EEP method for post-computation of super-convergent solutions in one-dimensional Galerkin FEM for second order non-self-adjoint Boundary-Value Problem
下载PDF
导出
摘要 将一维Ritz有限元法超收敛计算的EEP(单元能量投影)法推广到二阶非自伴常微分方程两点边值问题Galerkin有限元法的超收敛计算。在对精确单元的研究中,发现与Ritz有限元法不同,只要检验函数采用伴随算子方程的解,无论试函数取何形式,在结点处都可得到精确的解函数值。对近似单元的研究表明,EEP法同样适用于Galerkin有限元法,不仅保留了简便易行、行之有效、效果显著的特点,同时也保留了EEP法的特有优点,如:任一点的导数和解函数的误差与结点值的误差具有相同的收敛阶。 The present paper extends the Element Energy Projection (EEP) method, which is very successful in Ritz FEM, to the super-convergent computation in Galerkin FEM for second order non-self-adjoint BVP(Boundary Value Problem). In the study of exact elements, it has been shown and proved that, as long as the test functions are constructed using the solution of the adjoint differential equation, the element is bound to produce exact nodal solutions no matter what the trial functions are employed. For approximate elements, it has been found out that the EEP method can well be applied to Galerkin FEM for super-convergent calculation of both solution functions and derivatives at any point on an element in post-processing stage. The proposed method is simple, effective and efficient. A large number of numerical examples consistently show that the accuracy for both solution functions and derivatives so calculated is well comparable to that of the nodal solution values.
作者 袁驷 林永静
出处 《计算力学学报》 EI CAS CSCD 北大核心 2007年第2期142-147,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50278046) 教育部博士点基金(97000315)资助项目
关键词 GALERKIN有限元 非自伴问题 一维问题 超收敛 单元能量投影 Galerkin FEM non-self-adjoint one-dimensional problem super-convergence element energy projection
  • 相关文献

参考文献2

二级参考文献11

  • 1Strang G and Fix G. An analysis of the finite element method [M]. Prentice-Hall, 1973.
  • 2Douglas J, Dupont T. Galerkin approximations for the two point boundary problems using continuous, piecewise polynomial spaces [J]. Numer. Math., 1974, (22): 99-109.
  • 3Zhu J Z, Zienkiewicz O C. Superconvergence recovery technique and a posteriori error estimator [J]. International Journal for Numerical Methods in Engineering, 1990, 30: 1321-1339.
  • 4Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimator, part I: the superconvergence patch recovery [J]. International Journal for Numerical Methods in Engineering, 1992, 33: 1331-1364.
  • 5Tong P. Exact solution of certain problems by finite-element method [J]. AIAA Journal, 1969, (7): 178-180.
  • 6Yuan Si. From matrix displacement method to FEM: loss and recovery of stress accuracy [A]. Proceedings of First International Conference on Structural Engineering [C]. ed. Y. Long, 1999, Kunming, China, 134-141.
  • 7YUAN Si. From matrix displacement method to FEM: Loss and recovery of stress accuracy [A].invised papers. In: LONG Yu-qiu Ed. Proceedings of 1 st International Conference on Structural Engineering[ C ] . Beijing : Tsinghaua University Press, 1999,134-141.
  • 8Strang G, Fix G. An Analysis of the Finite Element Method [ M ]. Englewood, Cliffs, N J: PrenticeHall, 1973.
  • 9Tong P. Exact solution of certain problems by finite-element method[J]. AIAA, 1969,7: 178-180.
  • 10袁驷 王枚.有限元(线)法超收敛应力计算的新方案及其若干数值结果[C].袁明武主编.中国计算力学大会论文集[C].广州, 中国,2001,12月..

共引文献58

同被引文献79

引证文献27

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部