摘要
进一步研究了均衡函数,改进了[4]中公理化体系,获得了两大数均衡函数及相应的变权模式并分析了这些模式之间的关系。最后,作为原理说明之用。
In this thesis, balanced function are made a detailed study coming to following aspects: 1) If a elementary function g(t) satisfies g′(t)≥0 and g″(t)≤0 then B 1(x 1,…,x m)=mj=2g(x j) is a balanced function 2) If a elementary function h(t) satisfies ( lnh(t))″≤0 then B 2(x 1,…,x m)=mj=1h(x j) is a balanced function. 3) If B (x 1,…,x m) is a balanced function and the elementary function φ(t) satisfies φ′(t)≥0 on the range of B, then (φB)(x 1,…,x m)+c(c is a constant) is a balanced function and induces the same model of variable weight that B(x 1,…,x m) does. 4) As deduction of the above , we give the balanced functions as ∑ 1(x 1,…,x m)=mj=1x j, ∏ 1(x 1,…,x m)=∏mj=2x α j(α>0) and ∑ α(x 1,…,x m)=mj=2x α j (0≤α≤1), and corresponding weight fomulas. At last, a example is given to note the variable weight principle
出处
《系统工程理论与实践》
EI
CSCD
北大核心
1997年第4期58-64,74,共8页
Systems Engineering-Theory & Practice
关键词
均衡函数
变权综合
知识表示
因素完间理论
决策
balanced function
variable weight sgnthesizing
knowledge representation