摘要
真实的网络流量普遍存在统计上的自相似性,因此传统的基于泊松过程和马尔科夫模型等已不能反映实际测量的流量。针对传统检测方法存在的问题,将基于Hurst参数评估应用到DoS攻击检测中,由H参数变化来检测DoS攻击。通过分析DARPA 1998入侵检测数据表明,基于该法的Hurst参数评估能够检测到DoS攻击,此法比传统的基于特征匹配的网络流量异常检测法在检测精度上有较大提高。
Most researches regard the real traffic has self-similarity, so traditional model based possion or Markov can't adapt to the real traffic. In order to resolve these problems, the estimation is used based on Hurst parameter to detect DoS attack, researching on the affect of Hurst parameter change brought by DoS attack. By analyzing the 1998 DARPA intrusion detection evaluation dataset show that this method detect DoS attack, and is more reliable on the recognition of all kinds of DoS attack than any other method based on measure precision.
出处
《计算机工程与设计》
CSCD
北大核心
2007年第8期1785-1787,共3页
Computer Engineering and Design
基金
国防预研基金项目(A1420061266)
关键词
网络流量
异常检测
自相似性
HURST参数
拒绝服务攻击
network traffic
abnormal detection
self-similarity
Hurst parameter
denial of service attack