期刊文献+

基于模拟退火的混合差分演化算法研究 被引量:8

Study of hybrid differential evolution based on simulated annealing
下载PDF
导出
摘要 介绍了一种求解函数优化问题的新策略——差分演化算法,与其它算法相比,该算法具有稳健性强,收敛速度快的优点;同时,把模拟退火策略融入到差分演化的过程中,提出了一个混合演化算法——基于模拟退火的混合差分演化算法,实验表明混合后的算法比单一的差分演化算法更稳健,收敛速度也略有提高。 Differential evolution algorithm for the function optimization problems is introduced. The algorithm is much more robust and quicker in convergence than other evolution algorithms. At the same time, a new algorithm, hybrid differential evolution algorithm based on simulated annealing, is designed and tested by several nonlinear function optimization. The results indicated the proposed al- gorithm improve the efficiency of differential evolution algorithm and much more robust than simply differential evolution.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第9期1989-1991,2102,共4页 Computer Engineering and Design
基金 国家973重点基础研究发展计划基金项目前期研究专项(2004CCA02500) 国家自然科学基金项目(60572015) 孝感学院青年基金项目(Z2007026)
关键词 差分演化 模拟退火 稳健性 演化算法 变异操作 differential evolution simulated annealing robustness evolutionary algorithms mutation operation
  • 相关文献

参考文献4

二级参考文献17

  • 1康立山 谢云 等.非数值并行算法--模拟退火算法[M].北京:科学出版社,1998.22-55.
  • 2[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 3[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.
  • 4[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996.
  • 5[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973.
  • 6[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975.
  • 7[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975.
  • 8[7]Storn R. Differential evolution design of an IIR-filter [A]. IEEE Int Conf on Evolutionary Computation[C]. Nagoya,1996. 268-273.
  • 9[8]Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 10[9]Pahner U, Hameyer K. Adaptive coupling of differential evolution and multiquadrics approxima-tion for the tuning of the optimization process [J]. IEEE Trans on Magnetics, 2000, 36(4): 1047-1051.

共引文献85

同被引文献72

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部