摘要
设T是一个树,uv是T的一条边,其中d(v)=2.考虑经过一种特殊的变形后树的代数连通度的变化为:收缩边uv,并以收缩后的点u(v)为端点增加一条新的悬挂边,这样得到的新树记为T′,则α(T)≤α(T′).
If T is a tree, and uv is an edge of T, where d(v) = 2. This paper investigates how the algebraic connectivity changes under the perturbation: by contracting the edge uv, and adding a pendent edge at the new vertex u(v), and resulting in a new tree T', thenα(T)≤α(T').
出处
《重庆工学院学报》
2007年第7期18-20,共3页
Journal of Chongqing Institute of Technology
关键词
树
代数连通度
收缩
tree
algebraic connectivity
contract