摘要
在这部份2中.我们先证明部份1中叙述的定理3.1[15].这证明是通过换变数的办法,把原方程组化成微分动力系统理论中.有关典范方程组的一种形式来完成的.然后用定理3.1[15]加上预备定理2.1来证明部份1中宣布的本文主要定理.有关可容许扰动的定义包含在这部份2的附录中.这主要定理的意义描述在部份1引言中.
In Part 2, theorem 3. 1 stated in part 1[15] is proved first. The proof isobtained via a way of changing variables to reduce the original system of differential equations to a form concerning standard systems of equations in thetheory of different table dynamical systems. Then by using theory 3. 1 together withthe preliminary theory 2.1, the Main Theorem of this paper announced in part Iis proved. The definition of admissible perturbation is romained in the appendixof part 2. The meanings of the main theorem is described in the introduction ofpart 1.
出处
《应用数学和力学》
CSCD
北大核心
1997年第5期395-412,共18页
Applied Mathematics and Mechanics
关键词
向量丛动力系统
非一致双曲性
常微分方程
vector bundle dynamics, nonuniform hyperbolicity, ergodicity, admissible perturbation, pointwise boundedness