期刊文献+

复Finsler流形上的Koppelman-Leray-Norguet公式

The Koppelman-Leray-Norguet Formulas on Complex Finsler MAnifolds
原文传递
导出
摘要 利用不变积分核(Berndtsson核),复Finsler度量和联系于Chern-Finsler联络的非线性联络,研究复Finsler流形上具有逐块光滑C^((1))边界的有界域上(p,q)型微分形式的积分表示,得到了(p,q)型微分形式的Koppelman-Leray-Norguet公式和■-方程的解.作为应用,利用复Finsler度量和联系于Chern-Finsler联络的非线性联络,给出了Stein流形上具有逐块光滑C^((1))边界的有界域上(p,q)型微分形式的Koppelman- Leray-Norguet公式以及■-方程的解,并且得到了Stein流形上实非退化强拟凸多面体上(p,q)型微分形式的积分表示式和■-方程的解. By means of the invariant integral kernel (the Berndtsson kernel), complex Finsler metric and non-linear connection associated with Chern-Finsler connection to research the integral representations for the differential forms of type (p, q) on a bounded domain with piecewise smooth C^(1) boundaries on a complex Finsler manifold, the Koppelman-Leray-Norguet formulas are obtained, and the R-equations are solved. As an application, with the help of the complex Finsler metric and non-linear connection associated with Chern-Finsler connection, we give the Koppelman-Leray-Norguet formulas of (p, q) differential forms and the solutions of δ-equation on a bounded domain with piecewise smooth C^(1) boundaries on a Stein manifold. Moreover, we obtain the integral formulas of (p, q) differential forms and the solutions of δ-equation on a real non-degenerate strictly pseudoconvex polyhedra on a Stein manifold.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第3期641-652,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10271097 10571144) 厦门大学新世纪优秀人才支持计划
关键词 复FINSLER流形 Chern-Finsler联络 不变积分核 complex Finsler manifold Chern-Finsler connection invariant integral kernel
  • 相关文献

参考文献2

二级参考文献8

  • 1Ingo Lieb,R. Michael Range.On integral representations and a priori Lipschitz estimates for the canonical solution of the $$\bar \partial $$ -equation[J].Mathematische Annalen.1983(2)
  • 2R. Michael Range,Yum-Tong Siu.Uniform estimates for the $$\bar \partial $$ -equation on domains with piecewise smooth strictly pseudoconvex boundaries[J].Mathematische Annalen.1973(4)
  • 3Ingo Lieb.Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten[J].Mathematische Annalen.1970(1)
  • 4Lieb,I.Die Cauchy-Riemannschen differentialgleichungen auf streng pseudokonvexen gebieten, Math[].Annales.1970
  • 5Zhong,T. D.Koppelman-Leray formula on complex manifolds, Acta Math[].Scientia.1995
  • 6Koppelman,W.The Cauchy integral for differential forms, Bull[].Amer Soc.1967
  • 7Berndtsson,B.Cauchy-Leray forms and vector bundles, Ann[].Scient Ec Norm Sup.1991
  • 8MO Xiaohuan School of Mathematical Sciences, Peking University, Beijing 100871, China.On Riemann-Finsler geometry[J].Chinese Science Bulletin,1998,43(6):447-450. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部