期刊文献+

一种基于Mumford-Shah模型的红外图像边缘检测方法 被引量:3

New method for edge detection of infrared images based on Mumford-Shah model
下载PDF
导出
摘要 Chan-Vese模型是一种优秀的简化Mumford-Shah模型。然而Chan-Vese模型是以两个同质区域为基础建立的,这并不符合红外图像的特点,导致直接应用该模型处理红外图像时可能失败。针对这一问题,提出了一种适用于红外图像边缘检测的改进Mumford-Shah模型,并对该模型中目标边缘的保持、停止准则的建立及算法速度的提高作了详细讨论。实验表明,改进Mumford-Shah模型能够克服Chan-Vese模型在对红外图像边缘检测时不能跨越过渡区域的缺点,有效地检测出目标边缘。 Chan-Vese(C-V) model is an excellent model of simplified Mumford-Shah models. As Chan-Vese model is based on two homogenous regions, it causes failure in edge detection of infrared images. A level set method for edge detection of infrared image based on improved Mumford-Shah model is proposed. The schemes of preserving object edges, establishing the stopping criterion and speeding up the algorithm are discussed. The experiments show that this model can overcome the failure of C-V model and detect edge of infrared images efficiently.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2007年第4期566-570,共5页 High Power Laser and Particle Beams
基金 成都空军装备部资助课题(H04010501w050206)
关键词 MUMFORD-SHAH模型 CHAN-VESE模型 红外图像 边缘检测 Mumford-Shah model Chan-Vese model Infrared images Edge detection
  • 引文网络
  • 相关文献

参考文献6

  • 1Osher S,Sethian J.Fonts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988,79:12-49.
  • 2Chan F T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10:266-277.
  • 3Sethian J.Level set methods and fast marching methods:evolving interfaces in computational geometry,fluid mechanics,computer vision,and materials science[M].Cambridge University Press,1999.
  • 4Chop D.Computing minimal surfaces via level set curvature flow[J].Journal of Computational Physics,1993,106(1):77-91.
  • 5李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 6Tsai Y R.Rapid and accurate computation of the distance function using grids[J].Journal of Computational Physics,2002,178(1):175-195.

二级参考文献1

  • 1李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..

共引文献124

同被引文献55

引证文献3

二级引证文献16

;
使用帮助 返回顶部