期刊文献+

基本矩阵的鲁棒贪心估计算法 被引量:11

A Robust Greedy Algorithm for Estimating the Fundamental Matrix
下载PDF
导出
摘要 分析了基于随机抽样检验思想的现有鲁棒算法在基本矩阵的求解问题中存在的不足,提出一种获得基本矩阵最优解的算法.利用各种鲁棒技术获得内点集,以点到极线的距离作为最优量度标准,采用贪心策略在内点集中寻找最优子集,并利用最优子集来计算基本矩阵.合成数据与真实图像的实验结果表明,该算法在基本矩阵的求解精度、抗噪声能力、对极点的稳定性等方面优于现有的鲁棒方法. By analyzing the shortcoming of existing robust algorithms based on random sampling employed in estimating the fundamental matrix, a novel algorithm is proposed for optimal estimation of fundamental matrix. The algorithm firstly uses some robust techniques to construct an inliers set of matching points. Then it takes the epipolar distance as the optimal criterion and search optimal subset in the inliers set under the greedy strategy. Finally, the fundamental matrix is calculated with the optimal subset. Experimental results on real image and synthetic data show that the proposed algorithm is superior over other robust methods in terms of estimation accuracy, anti-noise ability and stability of epipoles.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第5期651-655,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60372062)
关键词 对极几何 基本矩阵 鲁棒估计 RANSAC 贪心策略 最优子集 epipolar geometry fundamental matrix robust estimation RANSAC greedy strategy optimum subset
  • 相关文献

参考文献10

  • 1陈泽志,吴成柯.一种高精度估计的基础矩阵的线性算法[J].软件学报,2002,13(4):840-845. 被引量:15
  • 2孙凤梅,胡占义.摄像机简化模型对三维重构的影响——分析与实验[J].计算机辅助设计与图形学学报,2005,17(10):2257-2262. 被引量:10
  • 3Armangue Xavier,Salvi Joaquim.Overall view regarding fundamental matrix estimation[J].Image and Vision Computing,2003,21:205-220
  • 4Chum Ondrej,Werner Tomas,Matas Jiri.Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint[C]//Proceedings of the 17th International Conference on Pattern Recognition,Los Alamitos,2004:112-115
  • 5Torr P H S,Murray D W.The development and comparison of robust methods for estimating the fundamental matrix[J].International Journal of Computer Vision,1997,24(3):271 -300
  • 6陈付幸,王润生.基础矩阵估计的聚类分析算法[J].计算机辅助设计与图形学学报,2005,17(10):2251-2256. 被引量:9
  • 7Zhang Zhengyou.Determining the epipolar geometry and its uncertainty:a review[J].International Journal of Computer Vision,1998,27(2):161-198
  • 8Torr P H S,Zisserman A.MLESAC:a new robust estimator with application to estimating image geometry[J].Computer Vision and Image Understand,2000,78(1):138-156
  • 9Tordoff Ben,Murray David W.Guided-MLESAC:faster image transform estimation by using matching priors[J].IEEE Transactions on Pattern analysis and machine intelligence,2005,27(10):1523-1535
  • 10胡玉锁,陈宗海.一种新的基于线性EIV模型的鲁棒估计算法[J].计算机研究与发展,2006,43(3):483-488. 被引量:8

二级参考文献42

  • 1Hartley R. In defense of the eight-point algorithm [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,1997, 19(6): 580~593.
  • 2Zhang Zhengyou. Determining the epipolar geometry and its uncertainty: A review [J]. International Journal of Computer Vision, 1998, 27(2): 161~195.
  • 3Torr P H S, Murray D W. The development and comparison of robust methods for estimating the fundamental matrix [J].International Journal of Computer Vision, 1997, 24(3): 271~300.
  • 4Zhang Zhengyou. On the optimization criteria used in two-view motion analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 717~ 729.
  • 5Torr P H S, Zisserman A. MLESAC: A new robust estimator with application to estimating image geometry [J]. Computer Vision and Image Understanding, 2000, 78(1): 138~156.
  • 6Brandt Sami. Theorems and algorithms for multiple view geometry with applications to electron tomography [D]. Espoo:Helsinki University of Technology, 2002.
  • 7Brandt Sami. Maximum likelihood robust regression with known and unknown residual models [A]. In: Proceedings of the Statistical Methods in Video Processing Workshop, in Conjunction with ECCV 2002, Copenhagen, Denmark, 2002.97 ~ 102.
  • 8Brandt Sami, Heikkonen J. A new robust Bayesian method for the affine F-matrix estimation [A]. In: Proceedings of the Vision, Modeling, and Visualization 2000, Saarbrücken, 2000.39~ 46.
  • 9Ueda Naonori, Nakano Ryohei, et al. SMEM algorithm for mixture models [J]. Neural Computation, 2000, 12(9): 2109~2128.
  • 10McLachlan G J, Basford K. Mixture Models: Inference and Application to Clustering [M]. New York: Marcel Dekker,1988.

共引文献35

同被引文献111

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部