期刊文献+

基于边界点的可分离性度量及特征选择 被引量:1

Separability Measure Based on Boundary Points and Feature Selection
下载PDF
导出
摘要 提出了一种新的面向高维数据的特征选择方法,在特征子集搜索上采用遗传算法进行随机搜索,在特征子集评价上采用基于边界点的可分性度量作为评价指标及适应度。实验结果表明,该算法可有效地找出具有较好的可分离性的特征子集,从而实现降维并提高分类精度。 This paper proposes a new feature selection method for the high-dimensional data, which realizes the feature subset search by genetic algorithm, and the feature subset fitness is evaluated by the separability measure based on boundary points. The experiments show that the proposed algorithm can find out the feature subsets with good separability, which results in the low-dimensional data and the good classification accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第10期79-80,89,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60573097) 广东省自然科学基金资助项目(04300462 05200302)
关键词 特征选择 边界点 可分离性 遗传算法 Feature selection Boundary points Separability GA
  • 相关文献

参考文献10

  • 1John G H,Kohavi R,Pfleger K.Irrelevant Features and the Subset Selection Problem[C]//Proceedings of the 11^th International Conference on Machine Learning.1994:121-129.
  • 2Kohavi R,John G H.Wrappers for Feature Subset Selection[J].Artificial Intelligence,1997,97(1/2):273-324.
  • 3Jiang Daxin,Tang Chun,Zhang Aidong.Cluster Analysis for Gene Expression Data:A Survey[J].IEEE Transactions on Knowledge and Data Engineering,2004,16 (11):1370-1386.
  • 4Liu Huan,Yu Lei.Toward Integrating Feature Selection Algorithms for Classification and Clustering[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(5):491-502.
  • 5Sancho J,Pierson W E,Ulug B,et al.Class Separability Estimation and Incremental Learning Using Boundary Methods[J].Neurocomputing,2000,35(1-4):3-26.
  • 6Ho T K,Basu M.Complexity Measures of Supervised Classification Problems[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(3):289-300.
  • 7Yang J,Honavar V.Feature Subset Selection Using a Genetic Algorithm[J].IEEE Intelligent Systems,1998,13(2):44-49.
  • 8Bir B,Lin Yingqiang.Genetic Algorithm Based Feature Selection for Target Detection in SAR Images[J].Image and Vision Computing,2003,21(7):591-608.
  • 9II-Seok Oh,Lee Jin-Seon,Moon Byung-Ro.Hybrid Genetic Algorithms for Feature Selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26 (11):1424-1437.
  • 10HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..

共引文献148

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部