期刊文献+

基于遗传算法的脉冲推力器控制方法研究 被引量:2

Research on control method of pulse thrusters based on genetic algorithm
下载PDF
导出
摘要 为有效拦截大气层内的机动目标,提出了一种新的脉冲推力器控制方法.首先建立了拦截弹上脉冲推力器的数学模型;其次针对直接力与气动力复合控制的特殊性给出了对称点火逻辑,分别跟踪弹体坐标系不同坐标轴上的控制指令;最后为了减小对控制指令的跟踪误差,使用遗传算法对脉冲推力器的开启数量进行了优化.通过对拦截弹性能指标的分析给出了适应度函数,此外引入移民方法用来维持种群多样性,在此基础上搜索全局最优解.仿真结果表明,该脉冲推力器控制方法对于大气层内的机动目标具有较高的命中精度. In order to effectively intercept maneuverable target in aerosphere, a new control method of pulse thrusters is presented. A mathematical model Of pulse thrusters for interceptor is constituted. And with a view to characteristic of combine control, symmetrical fire logic is presented to respectively track control commands of axes in body coordinate system. In order to reduce tracking error of control command, a genetic algorithm is given to optimize quantities of used pulse thrusters. After analyzing performances of interceptor missile, a fitness function is presented. Moreover, immigration method is introduced to maintain population diversity, and search global optimization parameters. Simulation results show that this control method of pulse thrusters can gain satisfied hit precision for maneuverable target in aerosphere.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第5期721-724,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60434010) 黑龙江省杰出青年基金资助项目(JC200606)
关键词 非线性控制系统 姿态控制 遗传算法 脉冲推力器 nonlinear control system attitude control genetic algorithm pulse thruster
  • 引文网络
  • 相关文献

参考文献11

  • 1JITPRAPHAI T, COSTELLO M. Dispersion reduction of a direct - fire rocket using lateral pulse jets [ R]. AIAA - 2001 -0104. 2001.
  • 2JITPRAPHAI T, BURCHETT B, COSTELLO M. A comparison of different guidance schemes for a direct fire rocket with a pulse jet control mechanism [ R]. AIAA - 2001-4326. 2001.
  • 3斯维特洛夫BT,戈卢别夫NC.防空导弹设计[M].北京:宇航出版社,2004.
  • 4YANG S. Analysis of optimal midcourse guidance law [J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32 (1) : 419 -425.
  • 5赵温波,杨鹭怡,王立明.径向基概率神经网络的混合结构优化算法[J].系统仿真学报,2004,16(10):2175-2180. 被引量:14
  • 6CHEN S, WU Y, LUK B. Combined genetic algorithm optimization and regularized orthogonal least squares learning or radial basis function networks [ J ]. IEEE Trans Neural Networks, 1999, 10 (5): 1239-1243.
  • 7GAING Z. A particle swarm optimization approach for optimum design of PID controller in AVR system [ J ]. IEEE Trans on Energy Conversion, 2004, 19 (2) : 384 - 391.
  • 8KROHLING R, REY J. Design of optimal disturbance rejection PID controllers using genetic algorithm [ J]. IEEE Trans Evol Comput, 2001,5 (2) : 78 -82.
  • 9CHEN Y, NARIEDA S, YAMASHITA K. Blind nonlinear system identification based on a constrained hybrid genetic algorithm [ J ]. IEEE Trans on Instrum Meas, 2003, 52 (3) : 898 - 902.
  • 10张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报(工学版),2005,35(1):91-96. 被引量:33

二级参考文献48

  • 1[11]Reed R. Pruning algorithms-a survey [J]. IEEE Transaction On Neural Networks, 1993, 4 (5): 740-747.
  • 2[12]George B, Michael G. Feed-forward neural networks [J]. IEEE Potentials, 1994, 13 (4): 27-31.
  • 3[13]Karnin E D. A simple procedure for pruning back-propagation trained neural networks [J]. IEEE, Trans. Neural Networks, 1990, 1(2): 239-242.
  • 4[14]Kung S Y, Hu Y H. A Frobenius approximation reduction method (FARM) for determining optimal number of hidden units [A]. Int. Joint Conf. Neural Networks [C], 1989, 1: 443-447.
  • 5[15]Mozer M C, Smolensky P. Skeletonization: A technique for trimming the fat from a network via relevance assessment. Advances in Neural Information Processing (1) [M]. D. S. Turetzky, Ed. (Denver 1989), 1989, 107-115.
  • 6[16]Wynne-Jones M. Constructive algorithms and pruning: improving the multiplayer perceptron [A]. The 13th IMACS World Congress on Computation and Applied Mathematics [C], R.vichnevetsky and J. Miller, Eds., 1991, 747-750.
  • 7[17]Frean M. The upstart algorithm: a method for constructing and training feed-forward networks [J]. Neural Computation, 1990,2: 198-209.
  • 8[18]Fahlman S, Lebiere C. The cascade-correlation learning architecture. Advances in Neural Information Processing System II ed. D. Touretzky, 1990, 524-532.
  • 9[19]Whitely D, Bogart C. The evolutionary of connectivity: pruning neural networks using genetic algorithms [A]. International Joint Conference on neural networks [C], Washington, DC, 1990, 134-137.
  • 10[20]Miller G, Todd P, Hegde S. Designing neural networks using genetic algorithms [A]. The Third International Conference on Genetic Algorithms [C], 1989, 379-384.

共引文献91

同被引文献43

引证文献2

二级引证文献8

;
使用帮助 返回顶部