期刊文献+

基于蚁群算法的PID控制参数优化 被引量:24

Parameters optimization design of PID controller based on ant colony algorithms
下载PDF
导出
摘要 蚁群算法是近几年优化领域中新出现的一种仿生进化算法,该算法采用的分布式并行计算机制特别适用于组合优化问题(COP)的求解。在简要介绍蚁群算法的基础上,针对PID控制参数整定问题提出了一种基于蚁群算法的PID参数优化策略,并给出了该算法的具体实现步骤。仿真试验结果表明同传统的Ziegler-Nichols(ZN)法、遗传算法优化整定的结果进行比较,系统单位阶跃响应的超调量σ分别减少了51.5%和22%和调整时间ts分别减少了61.4%和67.5%,动态和稳态性能进一步改善,进而验证了该方法的可行性和有效性。 Ant colony algorithm is a new emerging bionic evolutionary algorithm,which employs distributed parallel computer system and is particularly applicable to the solution of Combinatorial Optimization Problems (COP).This paper,giving a brief introduction to the ant colony algorithm,presents a PID algorithm based ant colony algorithm optimization strategy and specific steps to realize it.Simulation results show that the unit step response system reduces the overshoot by 51.5% and 22% respectively and settling time t, decrease to 61.4% and 67.5% respectively,compared to the traditional Ziegler-Nichols(ZN) method and genetic algorithm.The further improvement of the dynamic and static performance proves the feasibility and effectiveness of this method.
作者 尹宏鹏 柴毅
出处 《计算机工程与应用》 CSCD 北大核心 2007年第17期4-7,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863) (the National High- Tech Research and Development Plan of China under Grant No.2003AA132050)
关键词 蚁群算法 PID 信息素 遗传算法 ZN法 ant colony algorithm PID pheromone genetic algorithm ZN method
  • 相关文献

参考文献11

  • 1Ziegler,Nichods.Optimum setting for automatic controller[J].ASME Transactions,1942(11):759-768.
  • 2Lee Jin Woo,Lee,Young Jin,Lee Kwon Soon.Anti-sway contro of an ATC using NN predictive PID control[C]//IECON Proceedings (Industrial Electronics Conference),IECON 2004-30th Annual Conference of IEEE Industrial Eeletronics Society,2004:2998-3003.
  • 3Li Han-Xiong,Zhang Lei,Cai,Kal-Yuan,et al.An improved robust fuzzy-PID controller with optimal fuzzy reasoning[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2005,35(6):1283-1294.
  • 4Herrero J M,Blasco X,Martinez M,et al.Optimal PID tuning with gentic algorithms for non-linear process models[C]//IFAC 15th Triennial World Congress,Barcelona,Spain,2002.
  • 5马翔,王劭伯.一种智能自整定PID控制器的设计与阶梯信号的应用[J].福州大学学报(自然科学版),2003,31(4):430-432. 被引量:10
  • 6段海滨,王道波,黄向华,朱家强.基于蚁群算法的PID参数优化[J].武汉大学学报(工学版),2004,37(5):97-100. 被引量:51
  • 7Dorigo M,Maniezzo V,Colorni A.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transaction On Systems,1996,26(1):1-26.
  • 8Dofigo M,Grmbardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactio on Evolutionay Computation,1997,1(1):53-66.
  • 9Codorni A,Dofigo M,Maniezzo V,et al.Ant system for job-shop scheduling[J].Belgian J Oper Res Statist.Comput Sci,1994,34(1):34-53.
  • 10Maniezzo V,Colorni A.The ant system applied to the quadratic assignment problem[J].IEEE Transactions on Knowledge Data Engineering,1999,11(5):769-778.

二级参考文献11

  • 1胡寿松.自动控制原理[M].北京:科学出版社,2002..
  • 2Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour[J]. NATURE, 2000, 406(6): 39-42.
  • 3Dorigo Macro, Vittorio Maniezzo, Alberto Colorni. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29-41.
  • 4Alberto Colorni, Dorigo Marco, Vittorio Maniezzo,et al. Distributed optimization by ant colonies[A]. In: Proceedings of European Conference on Artificial Life [C]. Paris, France, 1991:134-142.
  • 5Katja Verbeeck, Ann Nowe. Colonies of learning automata[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002, 32(6): 772-780.
  • 6James Montgomery, Marcus Randall. Anti-pheromone as a tool for better exploration of search space[A]. In: Proceedings of Third International Workshop ANTS[C]. Brussels, Belgium, 2002: 100-110.
  • 7王颖,谢剑英.一种基于改进蚁群算法的多点路由算法[J].系统工程与电子技术,2001,23(8):98-101. 被引量:11
  • 8董泽,刘娜,韩璞.专家整定PID控制系统的设计[J].计算机仿真,2002,19(1):23-25. 被引量:24
  • 9赵学峰.基于蚁群算法的一类扩展型TSP研究[J].系统工程,2003,21(1):17-21. 被引量:14
  • 10马良,姚俭,范炳全.蚂蚁算法在交通配流中的应用[J].科技通报,2003,19(5):377-380. 被引量:10

共引文献58

同被引文献196

引证文献24

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部