期刊文献+

基于空间分形特征差异的目标检测 被引量:2

Targets detection based on spatial fractal character differences
原文传递
导出
摘要 为有效检测海杂波中的弱小目标,针对海杂波的分形特征随大时空变化的特点,提出使用短时间内空间分形特征差异来检测海面弱小目标的方法.该法充分利用短时间和局部海域上海杂波的分形维具有稳定性,目标区域和海杂波间存在较大空间Hurst参数差异的特点,克服传统分形维检测法使用固定门限检测效果不佳的缺陷.经理论分析和IPIX雷达实际数据检测,目标和海杂波的特征量均值差异约为3,优于原方法分形维的均值差异小于0.8的检测效果. A method using spatial fractal character differences in a short time was proposed in order to detect weak and small targets within sea clutter, which could not be detected when using a fixed fractal dimensions threshold in a long time and large area. The new method utilized the characters that the fractal dimensions of sea clutter are stationary in a short time and partial area, and great spatial Hurst parameter differences between sea clutter area and target area are available. Theoretical analysis and experimental results of IPIX datasets show that the proposed method performs better than that only using the fractal dimensions of sea clutter. The difference between sea clutter and targets with new method is about 3, better than the old method below 0.8.
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2007年第2期45-48,共4页 Journal of Dalian Maritime University
关键词 海杂波 目标检测 空间分形 HURST参数 sea clutter target detection spatial fractal Hurst parameter
  • 引文网络
  • 相关文献

参考文献9

  • 1陈彦辉,谢维信.地海杂波的随机分形模型[J].电子科技大学学报,2000,29(3):239-242. 被引量:12
  • 2王红光,康士峰,张忠治.海杂波的分数布朗运动模型及其应用[J].现代雷达,2005,27(11):58-62. 被引量:8
  • 3LO T,LEUNG H,LITVA J,et al.Fractal characterization of sea-scattered signals and detection of sea-surface targets[J].IEEE Proceedings-F Radio and Signal Processing,1993,140(4):243-250.
  • 4杜干,张守宏.基于分维特征的舰船目标的检测[J].西安电子科技大学学报,1999,26(4):498-501. 被引量:9
  • 5HU J,TUNG W W,GAO J B.Detection of low observable targets within sea clutter by structure function based multifractal analysis[J].IEEE Transactions on Antennas and Propagation,2006,54(1):136-143.
  • 6MARTORELLA M,BERIZZI F,MESE E D.On the fractal dimension of sea surface backscattered signal at low grazing angle[J].IEEE Transactions on Antennas and Propagation,2004,52(5):1193-1194.
  • 7文必洋,王颂.一种应用海杂波分数维检测海面目标的方法[J].华中科技大学学报(自然科学版),2006,34(1):68-70. 被引量:9
  • 8HONG F,WU Z.A novel estimation of Hurst index based on wavelet[C]//IEEE 2003 International Conference on Communication Technology,2003:1447-1450.
  • 9HAYKIN S.The dartmouth database of IPIX radar[EB/OL].(2001-06-08)[2005-12-15]http://soma.crl.mcmaster.ca/ipix/dartmouth/.

二级参考文献18

  • 1谢文录,谢维信.时间序列中的分形分析和参数提取[J].信号处理,1997,13(2):97-104. 被引量:27
  • 2谢文录,谢维信.几种分形参数估计方法的性能分析和比较[J].西安电子科技大学学报,1997,24(2):172-179. 被引量:9
  • 3李进峰.强背景下的雷达信号模拟与检测扶西安[M].西安:西安电子科技大学,1998..
  • 4李进峰,学位论文,1998年
  • 5Lo T,IEE Proc-F Radio and Signal Processing,1993年,140卷,4期,243页
  • 6Jaggard D,J Appl Phys,1990年,68卷,11期,5356页
  • 7Lin N,J Moderm Optics,1995年,42卷,1期,225页
  • 8FalconerKJ.分形几何中的技巧[M].沈阳:东北大学出版社,1999..
  • 9Rostogi P K, Sheucher K F. Range dependence of volume scattering from a fractal medium[J]. Simulation Results of Radio Science, 1990, 25(5): 1 057-1 063.
  • 10Leung H, Lo T. Chaotic radar signal processing over the sea[J]. IEEE Journal of Oceanic Engineering,1993, 18(3): 287-295.

共引文献33

同被引文献26

  • 1陈瑛,罗鹏飞.混沌背景下基于RBF神经网络的弱信号检测[J].雷达与对抗,2004,24(2):16-20. 被引量:4
  • 2熊刚,赵惠昌,王李军.海杂波背景下雷达引信的相关检测方法研究[J].电子学报,2004,32(12):1937-1940. 被引量:5
  • 3文必洋,王颂.一种应用海杂波分数维检测海面目标的方法[J].华中科技大学学报(自然科学版),2006,34(1):68-70. 被引量:9
  • 4Lo T, Leung H, Litva J, etal. Fractal characterisation of sea scattered signals and detection of sea surface targets [J]. IEEE Proceedings F Radar and Signal ProcessinR, 1993, 140(1): 213- 250.
  • 5Madanizadeh S A, Nayebi M M. Signal detection using the corre- lation coefficient in fractal geometry [C]. Proceedings of Radar Conference. Boston: IEEE, 2007: 481-486.
  • 6Hu J, Tung W W, Gao J B. Detection of low-observable targets within sea clutter by structure function based multifractal analysis [J]. IEEE Transactions on Antennas and Propagation, 2006, 54 (1) : 136-143.
  • 7Gao J B, Yao K. Multifractal features of sea clutter [C]. Pro- ceedings of Radar Conference, Long Beach: IEEE, 2002: 500- 505.
  • 8Kamijo K, Yamanouchi A. Signal Processing Using Fuzzy Frac- tal Dimension and Grade of Fractality -Application to Fluctuations in Seawater Temperature [C]. Proceedings of Computational Intelligence in Image and Signal Processing, Honolulu: IEEE, 2007:133-138.
  • 9Guan J, Liu N B, Zhang J. Low-observable target detection in sea clutter based on fractal-based variable step-size least mean square algorithm [C]. Proceedings of Radar Conference on Sur- veillance for a Safer World, Bordeaux: IEEE, 2009: 1-5.
  • 10Hirehoren G A, DPAttelLis C E. Estimation of fractional Brown- ian motion with multiresolution Kalman filter banks [J]. IEEE Transactions on Signal Processing, 1999, 47(5): 1431-1434.

引证文献2

二级引证文献7

;
使用帮助 返回顶部