期刊文献+

Gauss-Newton算法在谐波功率测量中的应用 被引量:1

The application of Gauss-Newton algorithm in harmonic power measurement
下载PDF
导出
摘要 介绍了一种可用于非正弦情况下功率测量的数字算法,并研究了在虚拟仪器中的应用。目前,传统FFT算法受频率变化的影响较大,而Gauss-Newton法先把频率设定为一个初始值,用迭代的方法来确定电压电流信号及功率分量。本文给出了在计算机上模拟测试的结果,采用虚拟仪器语言LabVIEW编写算法程序,对该算法和FFT算法进行对比分析。仿真证明:该算法具有收敛较快且测试结果不受频率变化影响的优点,结合虚拟仪器平台,可得到较快的处理速度,可以满足实时测量的需要。 This paper presents a numerical algorithm for power measurement in nonsinusoidal conditions and studies the application in Virtual Instrument. Now, the traditional FFr algorithms showed the sensitivity to frequency variation. The Gauss-Newton algorithm assigns the initialization value for frequency, using the iterative procedure to determine voltage and current signals and power components. This article gives the simulated results, composes the algorithmic program using LabVIEW software, and compares the Gauss-Newton algorithm to FFT algorithm. In fact, the algorithm converges very fast and the test data are not sensitive to frequency variation, the algorithm operates fast when combines Virtual Instrument platform, and can meet the demand of real-time measurement.
出处 《电测与仪表》 北大核心 2007年第5期1-4,共4页 Electrical Measurement & Instrumentation
关键词 Gauss—Newton 功率测量 非正弦 LABVIEW Gauss-Newton power measurement nonsinusoidal LabVIEW
  • 相关文献

参考文献7

  • 1M.R.Irving.Efficient Newton-Raphson alogrithm for load-flow calculation in transmission and distribution networks[J].Proc,IEE,Vol.134,No.5,PP.325-328,1987.
  • 2B.C.Smith.A review of iterative harmonic analysis for AC-DC power systems[J].IEEE Trans.on Power Delivery,Vol.13,No.1,PP.180-185,Jan 1994.
  • 3V.V.Terzijia,J.C.Mikulovic.Digital metering of acitive and reactive power in Non-Sinusoidal conditions using Newton type algorithm[J].IEEE Instrumentation and Measurement technology conference,Canada,May,1997.
  • 4闫华光,宗建华,杨林.非正弦情况下无功功率定义的分析[J].电测与仪表,2003,40(2):5-7. 被引量:23
  • 5P.S.Filipski.Discussion of power definitions contained in the IEEE dictionary[J].IEEE Trans.on Power Delivery,Vol.9,No.3,PP.1237-1242,July1994.
  • 6A.E.Emsnuel.power in nonsinusoidal situations a review of definitions and physical meaning[J].IEEE Trans.on Power Delivery,Vol.5,No.3,PP.1377-1389,July 1990.
  • 7IEEE Standard Dictionary of Elecrtical and Electronics Terms/IEEE Std 1459-2000[S],The Insititute of Elecrtical and Electronics Engineers,Inc,New York,NY,2001.

二级参考文献2

共引文献22

同被引文献17

  • 1何英杰,邹云屏,刘飞,李辉,张玉成.一种改进自适应谐波检测算法研究[J].电力自动化设备,2006,26(9):23-26. 被引量:19
  • 2DURANTE L G,GHOSH P K. Active power measurement in non- sinusoidal environments[J]. IEEE Trans on Power Systems,2000, 15(3 ) : 1142-1147.
  • 3ZHANG J Q,SHEN Y. Power measurement under nonsinusoidal and noisy conditions[C]//IEEE Instrumentation and Measurement Technology Conference. Budapest :IEEE ,2001 : 1021 - 1025.
  • 4YOON W K,DEVANEY M J. Power measurement using the wavelet transform [J]. IEEE Trans on Instr Meas, 1998,47 (5) : 1205-1210.
  • 5YU K K C,WATSON N R,ARRILLAGA J. An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking[J]. IEEE Trans on Power Delivery,2005,20(2) : 1577- 1584.
  • 6DASH P K,SWAIN D P,LIEW A C,et al. An adaptive linear combiner for on-line tracking of power system harmonics [J]. IEEE Trans on Power Systems, 1996,11 (4) : 1730-1736.
  • 7GALLO D,LANDI C,PASQUINO N,et al. A new methodological approach to quality assurance of energy meters under non- sinusoidal conditions[J]. IEEE Trans on Instr Meas,2007,56(5): 1694-1702.
  • 8IEEE PES,Power System Instrumentation and Measurements Committee. IEEE Std.1459-2000 IEEE trial-use standard definitions for the measurement of electric power quantities under sinusoidal,nonsinusoidal,balanced or unbalanced conditions[S]. New York. USA : IEEE. 2000.
  • 9KWONG R,JOHNSTON E W. A variable step size LMS algorithm [ J ]. IEEE Trans on Signal Processing, 1992,40 ( 7 ) : 1633 - 1642.
  • 10TYSEER A,MAYYAS K A. Robust variable step-size LMS-type algorithm analysis and simulations[J]. IEEE Trans on Signal Processing, 1997,45(3) :631-639.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部