摘要
本文研究了关于[x]的两个不等式;得到对一切的自然数n有[x+y+nz]+[x+ny+z]+[nx+y+z]≤[(n+2)x]+[(n+2)y]+[(n+2)z]+2;当且仅当1≤n≤4时,有[x]+[y]+[z]+[x+ny+z]+[x+y+nz]+[nx+y+z]≤[(n+3)x]+[(n+3)y]+[(n+3)z]+1。
In this paper ,two inequalities about are discussed,We obtained for any natural number n, We have ++≤+++2,and if and only if 1≤n≤4 ,We have +++++≤++[(n+3)z]+1
出处
《延安大学学报(自然科学版)》
1997年第1期10-15,共6页
Journal of Yan'an University:Natural Science Edition