期刊文献+

双群体伪并行差分进化算法研究及应用 被引量:47

Research and application of pseudo parallel differential evolution algorithm with dual subpopulations
下载PDF
导出
摘要 为了提高差分进化算法的全局搜索能力和收敛速率,本文提出了一种双群体伪并行差分进化算法.该算法结合差分进化算法DE/best/2/bin变异方式局部搜索能力强、收敛速度快,和DE/rand/1/bin变异方式全局搜索能力强、鲁棒性好的特点,采用串行算法结构实现并行差分进化算法独立进化、信息交换的思想.为使初始化个体均匀分布在搜索空间,提高算法收敛到全局最优解的鲁棒性,提出了一种基于平均熵的初始化策略.典型Benchmarks函数测试和非线性系统模型参数估计结果表明,该方法能显著提高算法的收敛速率和全局搜索能力. To improve the global searching ability and convergence speed of differential evolution algorithm (DE), a pseudo parallel differential evolution algorithm with dual subpopulations (DSPPDE) is proposed in this paper. Combining with the properties of good local searching ability and fast convergence speed of DE/best/2/bin mutation scheme and the properties of good global searching ability and robustness of DE/rand/l/bin mutation scheme, the algorithm employs the ideal of isolated evolution and information exchanging in parallel DE algorithm by serial program structure. To diversify the initial individuals in the search space ,and improve the robustness of convergence to the global optimum, an initialization tactic based on the mean entropy is proposed. The tests of several classic Benchmarks functions and the parameters estimation result of a nonlinear system model show that the proposed algorithm can improve the convergence speed and the global searching ability greatly.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第3期453-458,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60375001) 高校博士点基金资助项目(20030532004).
关键词 双群体 差分进化算法 平均熵 参数估计 dual subpopulations DE algorithm mean entropy parameters estimation
  • 相关文献

参考文献12

  • 1STORN R,PRICE K.Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,TR-95-012[R].Berkeley:International Computer Science Institute 1995.
  • 2RAlNER S,PRICE K.Difierential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].J of Global Optimization,1997,11(4):341-359.
  • 3CHEONG F,LAI R.Designing a hierarchical fuzzy logic controller using differential evolution[C]∥Proc of 1999 IEEE Int Fuzzy Systerns Conf.Seoul:[s.n.],1999,1:277-282.
  • 4MOALLA S,ALIMI A M,DERBEL N.Design of beta neuml systems using differential evolution[C]//2002 IEEE Int Conf on Systems,Man and Cybernetics.Tunisia:[s.n.],2002,3:6-9.
  • 5URSEM R K,VADSTRUP P.Parameter identification of induction motors using differential evohition[C]//Proc of the Fifth Congress on Evolutionary Computation Conference.Canberra:[s.n.],2003,2:790-796.
  • 6VESTERSTROM J,THOMSEN R.A comparative study of differential evolution,particle swarrn optimization,and evolutionary algorithms on numerical benchmark problems[C]//Proc of Congress on Evolutionary Computation.Porland:[s.n.],2004,2:1980-1987.
  • 7CHIOU J P,WANG F S.A hybrid method of differential evolution with application to optimal control problems of a bioprocess system[C]//Proc of IEEE Int Conf on Evolutionary Computation.New York:[s.n.],1998:627-632.
  • 8LIU JH,LAMPINEN L.A fuzzy adaptive differential evolution algorithm[C]//IEEE Region 10 Conference on Computers,Communications,Control and Power Engineering.Beijing:[s.n.],2002:606-611
  • 9谢晓锋,张文俊,张国瑞,杨之廉.差异演化的实验研究[J].控制与决策,2004,19(1):49-52. 被引量:70
  • 10杨小芹,黎明,周琳霞.基于熵的双群体遗传算法研究[J].模式识别与人工智能,2005,18(3):286-290. 被引量:11

二级参考文献31

  • 1黄正良,万百五,韩崇昭.辨识Hammerstein模型的两步法[J].控制理论与应用,1995,12(1):34-39. 被引量:26
  • 2张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:96
  • 3黄炯,邬永革,李军,王执铨.基于遗传算法的系统在线辨识[J].信息与控制,1996,25(3):171-176. 被引量:13
  • 4徐南荣 宋文忠.系统辨识[M].南京:东南大学出版社,1991..
  • 5[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 6[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.
  • 7[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996.
  • 8[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973.
  • 9[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975.
  • 10[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975.

共引文献144

同被引文献484

引证文献47

二级引证文献332

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部