期刊文献+

掺杂对LiMn_2O_4正极材料的结构和性能的影响 被引量:2

Doping effect of cobalt,cerium and magnesium to spinel LiMn2O4 on their structures character and properties
下载PDF
导出
摘要 采用溶胶凝胶法合成了尖晶石型LiMn2O4正极材料,选取钴、铈和镁作为掺杂元素,考察了钴、铈和镁的掺杂对LiMn2O4正极材料的结构和电化学性能的影响.并运用XRDI、R、BET等方法对所合成的材料进行了表征.实验结果表明,掺杂一定量钴、铈和镁后的LiMn2O4正极材料循环寿命优于未经掺杂的LiMn2O4正极材料,循环50次后,3种掺杂后所得的电池材料的容量保持率均达95%以上.其中以掺杂钴的LiCo0.2Mn1.8O4正极材料循环性能最好,首次充放电容量达到105.6 mAh/g,50次循环后,其充放电容量仍保持在100.8 mAh/g. The positive materials of spinel LiMn2O4 were prepared by sol-gel method. The performance of a low cost, good rechargeable battery technology based on the LiM0.2 Mnl.8O4 (M = Co, Ce, Mg) was described and compared to LiMn2O4 positive materials. The doping effect of Co,Ce, Mg into LiMn2O4 positive materials was studied and the charge-discharge was carried to test the typical property of the new materials of LiM0.2 Mnl. 8O4 (M= Co, Ce, Mg). The structure characters were measured by XRD, IR, and BET techniques. The results revealed that Mdoped (M=Co,Ce,Mg) species could stabilize the structure of LiMn2O4 spinel and decrease the dissolution of manganese in the electrolyte effectively. The presence of Co,Ce, Mg in LiMn2O4 positive materials results in the improvement of the cyclization stability.
机构地区 浙江大学化学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2007年第4期421-425,共5页 Journal of Zhejiang University(Science Edition)
关键词 锂离子电池 掺杂 正极材料 循环性能 lithium-ion battery doping positive materials cyclization properties
  • 相关文献

参考文献17

  • 1ZHANG S S,J0W T R.Optimization of synthesis condition and electrode fabrication for spinel LiMn2O4 cathode[J].J Power Sorces,2002,109(1):172-177.
  • 2ARMSTRONG A R,BRUCE P G.Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J].Nature,1996,381:499-500.
  • 3GUAN J,LIU M.Transport properties of LiMn2O4 electrode materials for lithium-ion batteries[J].Solid State Ionics,1998,110 (1-2):21-28.
  • 4TANAKA T,OHTAK,ARAI N.Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan[J].J Power Sources,2001,97-98:2-6.
  • 5EFTEKHARI A.Fractal study of LiMn2O4 film electrode surface for lithium batteries application[J].Electrochimica Aeta,2002,47:4347-4350.
  • 6EHRLICH G M,MARSH C.Low-cost,lightweight rechargeable lithium ion batteries[J].J Power Sources,1998,73(2):224-228.
  • 7DONG H J,SEUNG M O.Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn2O4 rechargeable cells[J].J Electrochem Soc,1997,144(10):3342-3348.
  • 8WAKIHARA M.Recent developments in lithium ion batteries[J].Material Sci Eng R,2001,33(4):109-134.
  • 9AMATUCCI G G,PEREIRA N,ZHENG T,et al.Enhancement of the electrochemical properties of Li1Mn2O4 through chemical substitution[J].J Power Sources,1999,81-82;39-43.
  • 10WHITFIELD P S,DAVIDSON I J.Microwave synthesis of Li1.025 Mnl.975O4 and Li1+xMn2-xO4-yFy(x=0.05,0.15;y=0.05,0.1)[J].J Electrochem Soc,2000,147:4476-4484.

二级参考文献19

  • 1[4]Amatucci G G, Pereira N, Zheng T, et al. J Electrochem Soc, 2001, 148 (2): A171-177.
  • 2[6]Xia Y, Zhou Y, Yoshio M. Electrochem Soc, 1997, 8: 2593.
  • 3LIN Chang-Jian(林昌健)Dianhuaxue ( Chinese J. Electrochemistry), 1998, 4, 5.
  • 4Zhecheva E., Stoyanora R., Gorova M. Chem. Mater., 1996, 8, 1429.
  • 5Saidi M. Y., Barker J., Koksbang R. Electrochim. Acta,1996, 41, 199.
  • 6Kock A. de, Feng E., Gummow R.J. J. Power Sources,1998, 70, 247.
  • 7Iwata E., Takahashi K. I., Maeda K., Mouri T. J. Power Sources, 1999, 81 - 82,430.
  • 8Chromik R., Beck F. Electrichim. Acta, 2000, 45, 2175.
  • 9Yoshio M., Xia Y. Y., Sakai T. Electrochemistry, 2001.69.516.
  • 10LIU De-Rao(刘德尧),YOU Jin-Kua(尤金跨),ZHU Wei (储炜),YANG Yong(杨勇),LIN Zu-Geng(林祖赓)Dianhuaxue( Chinese J. Electrochemistry), 1999, 5,276.

共引文献23

同被引文献50

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部