摘要
证明了若G为一个k(k≥2)连通简单图,独立数为α,V(G)=n≥3,X1,X2,…,Xk是顶点集合V的子集,X=X1∪X2∪…∪Xk,且对于Xi(i=1,2,…,k)中任意两个不相邻点u,v,|N(u)∩N(v)|≥α,则X在G中可圈,并给出几个相关推论.
This paper has proved that if a simple graph G of order n(≥3) is k-connected ((k≥2) and such that for each i,i=1,2,… ,k, and for each pair of nonadjacent vertices u,v∈Xi, where X1 ,X2 ,… ,Xk are subsets of the vertex set V and X=X1∪X2∪…∪Xk , we have N(u)∩N(v)|≥α, where a is independent number of G, then G is X-cyclable. Moreover, it gives some propositions.
出处
《大学数学》
北大核心
2007年第3期70-72,共3页
College Mathematics
基金
国家自然科学基金资助项目(10501021)
关键词
邻域
圈
HAMILTON图
可圈
neighborhood
cycles
Hamiltonian graphs
eyelability