期刊文献+

多变量时间序列例外模式的识别 被引量:2

Identification of Outlier Patterns in Multivariate Time Series
原文传递
导出
摘要 多变量时间序列(MTS)在金融、医学、科学、工程等领域是非常普遍的.本文提出一种在 MTS 中识别异常模式的方法.采用自底向上的分割算法将 MTS 分割成互不重叠的子序列,使用扩展的 Frobenius 范数来计算2个MTS 子序列之间的相似性,通过 K-均值聚类将 MTS 子序列分为若干个类.根据异常模式的定义,从这若干个类中识别出异常模式.在2个实际数据集上进行实验,实验结果验证算法的有效性. Multivariate time series (MTS) is widely available in many fields including finance, medicine, science and engineering . An approach for identifying outlier patterns in MTS is proposed . By using bottomrup segmentation algorithm, MTS is divided into non-overlapping subsequences. An extended Frobenius norm is used to compare the similarity between two MTS subsequences. K-means algorithm is employed to cluster MTS subsequences into some classes. According to the definitions of outlier patterns , the outlier patterns in MTS can be identified from the classes . Experiments are performed on two real-world datasets: stock market dataset and brain computer interface dataset. The experimental results show the effectiveness of the algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第3期336-342,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60173058)
关键词 多变量时间序列(MTS) 白底向上的分割算法 扩展的Frobenius范数 例外模式 Multivariate Time Series (MTS), Bottom-Up Segmentation Algorithm, ExtendedFrobenius Norm, Outlier Pattern
  • 相关文献

参考文献10

  • 1Yang K, Shahabi C. A PCA-Based Similarity Measure for Multivariate Time Series // Proc of the 2nd ACM International Workshop on Multimedia Databases. Washington, USA, 2004: 65-74
  • 2Abonyi J, Feil B, Nemeth S, etal. Modified Gath-Geva Clustering for Fuzzy Segmentation of Multivariate Time-Series. Fuzzy Sets and Systems, 2005, 149(1): 39-56
  • 3Vlachos M, Yu P S, Castelli V. On Periodicity Detection and Structural Periodic Similarity[EB/OL]. 1-2005-12-11]. http://www. cs. ucr. edu/~mvlachos/pubs/sdmo5.pdf
  • 4Keogh E, Chu S, Hart D, et al. An Online Algorithm for Segmenting Time Series// Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001:289-296
  • 5Vasko K T, Toivonen H T T. Estimating the Number of Segments in Time Series Data Using Permutation Tests // Proc of the IEEE International Conference on Data Mining. Maebashi City, Japan, 2002t 466-473
  • 6Singhalt A, Seborg D E. Clustering of Multivariate Time-Series Data//Proc of the American Control Conference. Anchorage, USA, 2002:3931-3936
  • 7Shahabi C, Yan D H. Real-Time Pattern Isolation and Recognition over Immersive Sensor Data Streams//Proc of the 9th International Conference on Multi-Media Modeling. Taipei, China, 2003:93-113
  • 8Han Jiawei, Kamber M. Data Mining:Concepts and Techniques. Orlando, USA: Morgan Kaufmann Publishers, 2001
  • 9.落户上海的跨国公司地区总部已达86家[EB/OL].http://finance. sina. com. cn,2005-01-16.
  • 10Blankertz B, Curio G, Muller K R. Classifying Single Trial EEG:Towards Brain Computer Interfacing // Diettrich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002, 14: 157-164

共引文献2

同被引文献59

引证文献2

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部