期刊文献+

ROC曲线分析在评价入侵物种分布模型中的应用 被引量:526

Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models
下载PDF
导出
摘要 生态位模型(ecological niche models,ENMs)已广泛应用于物种潜在分布区预测,ENMs的应用也为外来入侵物种的风险分析提供了重要的定量化分析工具,但如何评价不同模型之间的预测效果成了当今研究的热点问题。本文介绍了受试者工作特征(ROC)曲线分析在评价不同生态位模型预测效果中的应用原理和分析方法,并以一种植物病原线虫-相似穿孔线虫(Radopholus similis)为例,应用ROC曲线分析法对其5种模型(BIOCLIM,CLIMEX,DOMAIN,GARP,MAXENT)的预测结果进行了比较分析。5种模型的ROC曲线下面积AUC(Area Under Curve)值分别为0.810,0.758,0.921,0.903和0.950,以MAXENT模型的AUC值最大,表明其预测效果最好;方差分析结果表明,除GARP与DOMAIN模型之间AUC值差异不显著外,其余各模型之间差异显著。 Ecological niche models (ENMs), which are widely employed to predict the potential geographic distribution of species, provide an important tool to quantify the risks imposed by invasive alien species. The problem of how to evaluate the performance of different models has attracted more and more attention. In the present paper, we introduced the principle of the method of Receiver Operating Characteristic (ROC) curve analysis in assessing the accuracy of different ENMs. We predicted the suitable distribution area of Radopholus similis, an important banana toppling disease nematode, with five widely used ENMs and evaluated the performance of different models by ROC curve analysis. The area under ROC curve (AUC) for BIOCLIM, CLIMEX, DOMAIN, GARP, and MAXENT models was 0.810, 0.758, 0.921, 0.903, and 0.950, respectively. Among these, the biggest value of AUC was assigned to MAXENT, indicating that the result gained by MAXENT should be better than the other four models. According to the results of analysis of variance (ANOVA), there was a remarkable difference in AUC between each model except for DOMAIN and GARP.
出处 《生物多样性》 CAS CSCD 北大核心 2007年第4期365-372,共8页 Biodiversity Science
基金 国家"973"项目(2002CB111400) "十一五"国家科技支撑计划(2006BAD08A15) 科研院所社会公益性研究专项(2004DIB3J096) 国家基础条件平台项目(2003DIB3J108)
关键词 受试者工作特征曲线 外来物种 模型评价 适生区 Radopholus similis ROC curve, alien species, model evaluation, suitable distribution area, Radopholus similis
  • 相关文献

参考文献33

  • 1Allouche O,Tsoar A,Kadmon R (2006) Assessing the accuracy of species distribution models:prevalence,kappa and the true skill statistic (TSS).Journal of Ecology,43,1223-1232.
  • 2Andersen MC,Adams H,Hope B,Powell M (2004) Risk assessment for invasive species.Risk Analysis,24,787-793.
  • 3Brotons L,Thuiller W,Araújo MB,Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability.Ecography,27,437-448.
  • 4Busby JR (1991) BIOCLIM-a bioclimate analysis and prediction system.In:Nature Conservation:Cost Effective Biological Surveys and Data Analysis (eds Margules CR,Austin MP),pp.64-68.CSIRO,Melbourne.
  • 5Carpenter G,Gillison AN,Winter J (1993) DOMAIN:a flexible modelling procedure for mapping potential distributions of plants and animals.Biodiversity and Conservation,2,667-680.
  • 6Cohen J (1960) A coefficient of agreement for nominal scales.Educational and Psychological Measurement,20,37-46.
  • 7Elith J,Graham HC,Anderson PR,Dudik M,Ferrer S,Guisan A,Hijmans JR,Huettmann F,Leathwick RJ,Lehmann A,Li J,Lohmann GL,Loiselle AB,Manion G,Moritz C,Nakamura M,Nakazawa Y,Overton MJ,Peterson AT,Phillips JS,Richardson K,Scachetti-Pereira R,Schapire ER,Soberon J,Williams S,Wisz SM,Zimmermann EN (2006) Novel methods improve prediction of species' distributions from occurrence data.Ecography,29,129-151.
  • 8Friedman JH,Hastie T,Tibshirani R (2000) Additive logistic regression:a statistical view of boosting.Annals of Statistics,28,337-407.
  • 9Goodenough DJ,Rossmann K,Lusted LB (1974) Radiographic applications of receiver operating characteristic (ROC)curves.Radiology,110,89-95.
  • 10Guisan A,Thuiller W (2005) Predicting species distribution:offering more than simple habitat models.Ecology Letters,8,993-1009.

同被引文献6563

引证文献526

二级引证文献3334

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部