期刊文献+

基于Copula-SV模型的金融投资组合风险分析 被引量:29

Risk Analysis of Financial Portfolio Based on Copula-SV Model
下载PDF
导出
摘要 基于正态Copula函数和SV模型,建立了正态Copula-SV模型,将其应用到金融投资组合风险分析,并与Copula-GARCH模型对金融投资组合风险分析方法进行了对比,结果表明,边缘分布的选择对变量的联合分布具有重要作用,Copula-SV模型比Copula-GARCH模型在刻画组合风险VaR值方面具有优越性。 Copula function is an effective statistic method for constructing the combined distribution and the dependency structure of multi-dimension random variables which have different marginal distributions. The SV model describes the financial volatility better than the GARCH model. Models based on Copula- GARCH are in fashion. Based on the theory of Normal Copula and SV model, this paper gets the Copula- SV model to analyze the financial portfolio risk. The experiential result indicates that the Copula-SV model is better than the Copula-GARCH model in the field of VaR.
出处 《系统管理学报》 北大核心 2007年第3期302-306,共5页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70471050)
关键词 COPULA函数 随机波动模型 蒙特卡罗模拟 风险分析 Copula function SV models Monte Carlo simulation risk analysis
  • 相关文献

参考文献11

  • 1[1]Nelsen R B.An introduction to copulas[M].New York:Springer,1998.
  • 2[2]Embrechts P,McNeil A,Straumann D.Correlation:pitfalls and alternatives[J].RISK Magazine,May,1999:69-71.
  • 3[3]Durrleman V A,Riboulet N G,Roncalli T.Copulas:An open field for risk management[R].2001.
  • 4[4]Embrechts P,Hoeing A,Juri A.Using copulae to bound the value-at-Risk for functions of dependent risks[J].Finance and Stochastics,2003,7:145-167.
  • 5张明恒.多金融资产风险价值的Copula计量方法研究[J].数量经济技术经济研究,2004,21(4):67-70. 被引量:59
  • 6余素红,张世英.SV与GARCH模型对金融时间序列刻画能力的比较研究[J].系统工程,2002,20(5):28-33. 被引量:39
  • 7李汉东,张世英.ARCH模型与SV模型之间的关系研究[J].系统工程学报,2003,18(2):97-103. 被引量:8
  • 8[8]Taylor S J.Modeling financial time series[M].Chichester..John Wiley and Sons,1986.
  • 9[9]Bjorn Eraker.MCMC analysis of diffusion models with application to finance[J].Journal of Business and Economic Statistics,2001,19(2):177-191.
  • 10[10]Renate Meyer,Jun Yu.BUGs for a Bayesian analysis of Stochastic volatility models[J].Econometrics Journal,2003(3):198-215.

二级参考文献14

  • 1李汉东.多变量时间序列波动持续性研究[M].天津:天津大学,2000..
  • 2J Bessis . Risk Management in Banking [MI, Wiley & Sons, New York, 1998.
  • 3E Bouye. Copulas for Finance, A Reading Guide and Some Applications, Working Paper, City University Business School, Love, ndon, 2000.
  • 4P G Hoel. Introduction to Mathernatical Statistics [M], Wiley & Sons, New York, 1984.
  • 5J Hull, A White . Value at Risk When Daily Changes in Market Variables Are Not Normally Distributed [J], 《Journal of Derivatives》, 5, 9-19 (1998) .
  • 6D X Li. Value at Risk based on the Volatility, Skecewess and Kurtosis, Technical Report, Riskmetrics Group, (1999) .
  • 7M- H Zhang, Q - S Cheng. Improve on Upper Tail Dependence with Mixture of Copulas, Working Paper, Shanghai University of Finanace and Economics, 2002.
  • 8M - H Zhang, Q - S Cheng. Gaussian Mixture Modelling to Detect Random Walksin Capital Markets [J], 《Mathematical and Computer Modelling》, 38, 503-508 (2003) .
  • 9J P Morgan . RiskMetricsTM [M], third edition, J P Morgan, 1995.
  • 10R B Nelsen. An Introduction to Copulas [M], Springer Verlag, New York, 1998.

共引文献99

同被引文献270

引证文献29

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部