期刊文献+

电子鼻牛奶质量检测的研究 被引量:9

Application of Electronic Nose in Determination of Milk Quality
下载PDF
导出
摘要 利用自主研制的CNe-Nose I型电子鼻气体分析仪对多种品牌、不同新鲜程度的牛奶进行检测,并通过模式识别方法分析和识别数据.牛奶各组分经由金属氧化传感器阵列采集信号,其数据及响应曲线记录在PC端.运用主元分析和人工神经网络方法识别曲线特征,通过与新鲜高质量样本的标准数据进行比较,判断出牛奶变质程度.实验结果表明,电子鼻技术对牛奶品质的识别率较高,且具有便捷、安全等特点,是一种发展前景良好的实用技术. A developed electronic nose system is described and used to measure different brands and qualities of milk. Pattern recognition algorithm serves for data analysis and recognition. In the experiment, milk components can be detected by Metal Oxide Sensor Array, and data graphs from sensors are then recorded in computer. Principal Component Analysis and Artificial Neural Network identify graph eigenvalues and distinguish different components. After, being compared to standard sample, milk's deteroprate grade can be estimated. Experimental results demonstrate good identification of this system in milk quality determination. With other advantages such as convenience and safety, electronic nose technology shows the potential in future aPPlication.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第8期1727-1731,共5页 Chinese Journal of Sensors and Actuators
基金 浙江省国际合作重点项目资助(2004C24002)
关键词 电子鼻 牛奶检测 气体传感器阵列 主元分析 人工神经网络 electronic nose milk detection gas sensor array principal component analysis artificial neural network
  • 引文网络
  • 相关文献

参考文献8

  • 1Gardner J W,Bartlett P N.Electronic Noses:Principles and Applications[J].Meas Sci Technol.2000 (11):1087-1087.
  • 2Chen Xing,Cao Mingfu,Li Yi,Hu Weijun,Wang Ping,et al.A Study of an Electronic Nose for Detection of Lung Cancer Based on a Virtual SAW Gas Sensors Array and Imaging Recognition Method[J].Meas Sci Technol,2005,(16):1535-1546.
  • 3Zampolli S,Elmi I,Ahmedl F,et al.An Electronic Nose Based on Solid State Sensor Arrays for Low-Cost Indoor Air Quality Monitoring Applications[J].Sensors and Actuators B,2004,(101):39-46.
  • 4张钦涛,王平.气体传感器在生物医学中的应用[J].传感技术学报,1999,12(2):151-158. 被引量:3
  • 5张顺平,张覃轶,李登峰,柏自奎,谢长生.电子鼻技术在食醋识别中的应用[J].传感技术学报,2006,19(1):104-107. 被引量:26
  • 6Schweizer-Berberich P M,Goppert J,et al.Application of Neural Network Systems to Dynamic Response of Polymer-Based Sensor Array[J].Sensor and Actuator B,1995,26/27:232-236.
  • 7Hanaki S,Nakamoto T,Moriizumi T.Artificial Odor-Recognition System Using Neural Network for Estimating System Using Neural Network for Estimating Sensory Quantities of Blended Fragrance[J].Sensor and Actuators A,1996,57(1):65-71.
  • 8Gardner J W,Hines E L,et al.Detection of Vapours and Odours From a Multisensor Array Using Pattern Recognition Techniques-Part2:Artificial Neural networks[J].Sensors and Actuators B,1992,9-35.

二级参考文献11

  • 1王平,陈裕泉,吴坚,束炎.人工嗅觉───电子鼻的研究[J].中国生物医学工程学报,1996,15(4):346-353. 被引量:16
  • 2王平 李蓉 等.CBME'95,全国生物医学工程联合学术会议论文集[M].北京,1995,10.413-415.
  • 3Corrado Di Natale.An Electronic Nose for the Recognition of the Vineyard of a Red Wine[J].Sensor and Actuators B,1996,33:83-88.
  • 4Roberts Stephen J.Parametric and Non-Parametric Unsupervised Cluster Analysis[J].Pattern Recognition,1997,30,(2):261-272.
  • 5Hammond Mark H.Training Set Optimization Methods for a Probabilistic Neural Network[J].Chemometrics and Intelligent Laboratory Systems,2004,71:73-78.
  • 6Elke Anklam,Markus Lipp,Branka Radovic,Emma Chiavaro & Gerardo Palla.Characterisation of Italian Vinegar by Pyrolysis-Mass Spectrometry and a Sensor Device('electronic nose')[J].Food Chemistry,1998,61(1/2):243-248.
  • 7Marina Cocchi,Caterina Durante,Giorgia Foca,Daniela Manzini,Andrea Marchetti,Alessandro Ulrici.Application of a Wavelet-Based Algorithm on HS-SPME/GC Signals for the Classification of Balsamic Vinegars[J].Chemometrics and Intelligent Laboratory Systems,2004,71:129-140.
  • 8Guerrero Maria I,Claudia Herce-Pagliai,Camean Ana M,Troncoso Ana M.Gustavo Gonzalez A.Multivariate Characterization of Wine Vinegars from the South of Spain According to Their Metallic Content[J].Talanta,1997:45:379-386.
  • 9Vincenzo Gerbi.Sensory Characterization of Wine Vinegars[J].Food Quality and Preference,1997,8(1):27-34.
  • 10胡军辉,吴润,夏辉,王爱华,谢长生.激光-感应复合加热制备纳米Al粉的工艺研究[J].激光技术,2000,24(6):348-350. 被引量:11

共引文献27

同被引文献112

引证文献9

二级引证文献66

相关主题

;
使用帮助 返回顶部