期刊文献+

边水气藏水平井压力动态点源解的计算方法 被引量:3

A CALCULATION METHOD OF POINT SOURCE SOLUTIONS FOR PRESSURE PERFORMANCE OF HORIZONTAL WELLS IN EDGE-WATER GAS RESERVOIRS
下载PDF
导出
摘要 某气藏边水活跃,气水关系复杂,利用水平井开采有水气藏取得了较好的开发效果,因此边水气藏水平井试井解释方法技术有着广阔的应用前景。为此,利用点源函数的思想建立了边水气藏渗流数学模型并求得了其基本解;通过积分变换的办法获得了边水气藏水平井压力动态响应函数;利用贝塞尔函数积分性质和泊松叠加公式对其压力响应函数进行了数学变换和简化;利用杜哈美原理、stehfest反演算法、Muskat的方法求解了该模型,得到了考虑井储和表皮影响的顶、底封闭边水气藏水平井的无因次压力和压力导数对无因次时间双对数曲线,分析了边水气藏水平井渗流特征及其影响因素;绘制了一系列的边水气藏水平井无因次压力和压力导数对无因次时间双对数曲线的典型图版。 Through introducing a successful application of horizontal wells in some gas reservoirs with active edge-water and complex gas-water contact, this paper recommends the well test analysis for horizontal wells to be widely used in such complicated reservoirs. This study built up a mathematical model representing fluid flow in porous media for edge-water reservoirs and obtained its basic solutions based on the theory of point source function, then through calculus transformation acquired the responding function of pressure performance, which was transformed and simplified in a mathematic way according to Bessel function and Poisson's summation formula, and got the solution of this model based on Duhamel theory, Stehfest Inversion Method and Muskat method. Thus, with consideration of wellbore storage and skin effect, this study plotted log-log type curves of dimensionless pressure and pressure derivative vs. dimensionless time for horizontal wells in edge-water gas reservoirs with impermeable top and bottom boundaries, which could help describe the fluids flowing features and their influencing factors for horizontal wells in edge-water gas reservoirs. This study also demonstrated a series of classic plots like that.
出处 《天然气工业》 EI CAS CSCD 北大核心 2007年第7期89-91,共3页 Natural Gas Industry
基金 "高等学校优秀青年教师教学科研奖励计划(TROAPY)" "教育部博士点基金课题(编号:20040615004)"资助
关键词 水平井 边水 气藏 开发 数学模型 压力动态 horizontal well, edge-water, development, mathematical model, pressure dynamics
  • 相关文献

参考文献10

二级参考文献12

  • 1冯曦.根据压力恢复试井资料计算气藏储量方法研究[J].天然气勘探与开发,1997,2:30-34.
  • 2[1] Gringarten A C and Ramey H J Jr. The use of source and Green's functions in solving unsteady-flow problems in reservoirs[J].SPEJ, Oct.1973,13(5):235~296.
  • 3[2] Ozkan E. Some strategies to exploit the Laplace transformation for a tabulated set of numbers[C].SPE30552,1995:1~16.
  • 4[3] Bourgeois M J. Well-test-model recognition with Laplace space[J].SPEFE,March,1993,8(1):17~26.
  • 5[4] Onur M.Well testing applications of numerical Laplace transformation of sampled-data[C].SPE36554,1996:1~10.
  • 6[5] Ozkan E and Raghavan R. New solutions for well test-analysis problems:part 1 analytical considerations[J].SPEFE,Sep.1991,6(3):359~368.
  • 7[6] Ozkan E and Raghavan R.New solutions for well-test analysis problems:part 2 computational considerations and applications[J].SPEFE,Sep.1991,6(3):369~378.
  • 8[7] Kuchuk F J and Habashy T M. Discussion of new solutions for well-test-analysis problem:part 1 analytical considerations[J].SPEFE,Dec.1994,9(4):309~311.
  • 9[8] Gringarten A C and Ramy H J Jr.Unsteady-state pressure distributions created by a well with a single horizontal fracture, partial penetration,or restricted entry[J].SPEJ,Aug,1974,14(4):413~424.
  • 10[9] Gringarten A C and Ramey H J Jr. Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture[J]. SPEJ,Aug.,1974,14(4):347~360.

共引文献62

同被引文献33

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部