摘要
为提高图像匹配的精度和稳定性,在图像匹配过程中用消除了Hessian矩阵的LMA改进算法对两幅图像透视变换矩阵的8个未知参数进行拟合,减少了迭代的计算量。匹配过程中用多分辨率金字塔法对图像进行分解,采用由粗到精的搜索策略,进一步减少了计算量并避免了误匹配。通过对照片进行匹配测试,证明了这种方法的有效性和实用价值。
In order to improve the robust and precise in image registration,we get the Hessian matrix removed to improve LMA for searching the eight unknown parameters of two input perspective transformation images and get computational gains.We use multi-resolution pyramid consists of a set of images representing an image in multi-resolution.With the coarsest level to the finest level search strategy,we get large computational gains and help prevent getting trapped in local minima.As the experimental results reveal,this approach is efficient and useful.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第24期78-80,165,共4页
Computer Engineering and Applications
基金
国家航空科学基金资助项目(No.04I53067)
关键词
透视变换图像匹配图像金字塔LMA
perspective transformation
image registration
pyramid image
Levenberg-Marquardt Aalgorithm( LMA )