期刊文献+

基于改进支持向量机的海面目标检测方法 被引量:3

The Method of Target Detection Based on Ameliorated SVM the Presence of Sea Clutter
下载PDF
导出
摘要 为解决舰载、岸基海防预警雷达在检测掠海飞行的反舰导弹时,受到海杂波严重干扰的问题,基于工程实际应用的需要,本文首先采用易于实现的盒维数提取方法,进而提出了一种基于改进核函数的支持向量机(Support Vector Machine,SVM)分类器目标检测方法。最后,基于S波段雷达实测海杂波数据进行了仿真实验,实验结果验证了本文方法具有较强的检测能力和抗杂波性能。 To solve this question that the ship-borne radar and shore-based early winning radar are interfered seriously by the sea clutter when they track the anti-ship missile of flight over the ocean, firstly this paper adopts the feasible method of extracting box dimension based on meeting the need of fact engineering. Furthermore the method of target detection with SVM classifier is presented of the ameliorated RBF kernel function. Finally, based on the observed sea clutter of S-band radar,the computer simulation is processed and the results prove the effective detection performance and noise tolerance.
出处 《信号处理》 CSCD 北大核心 2007年第4期598-602,共5页 Journal of Signal Processing
基金 国防预研项目资助(No.41303040203) 国家自然科学基金资助(No.60402032)
关键词 反舰导弹 盒维数 支持向量机 海杂波 anti-ship missile box dimension SVM sea clutter
  • 引文网络
  • 相关文献

参考文献10

  • 1林三虎,朱红,赵亦工.海杂波的混沌特性分析[J].系统工程与电子技术,2004,26(2):178-180. 被引量:17
  • 2S. Haykin, Li Xiaobo. Detection of Signal in Chaos [J]. Proceedings of IEEE, 1995,83 (1):95-122.
  • 3Nan Xie, Henry Leung,Hing Chart. A multiple-model prediction approach for sea clutter modeling [J]. IEEE Transactions on Geo-science and Remote Sensing. 2003,41 (6): 1491-1502.
  • 4S. Haykin, C. Deng. Classification of radar clutter using neural networks. IEEE Transactions on Neural Networks, 1991,2 (6) :589-600.
  • 5Henry Leung. Nonlinear clutter cancellation and detection using a memory-based predictor. IEEE Transactions on Aerospace and Electronic System. 1996,32(4):1249-1256.
  • 6王永诚,吴小飞.海杂波的分数维测量在对海面目标探测中的应用研究[J].现代雷达,2000,22(5):28-31. 被引量:13
  • 7Vapnik著,张学工译.统计学习理论的本质.清华出版社,2000.
  • 8许秀英,盛卫星.用改进核函数提高SVM的雷达目标识别率[J].现代雷达,2005,27(10):53-56. 被引量:10
  • 9Rosenstein M T,Collins J J,De L C J. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physica D, 1993,65 : 117-134.
  • 10谭龙.新一代天气雷达系统[J].广西气象,2003,24(1):58-59. 被引量:9

二级参考文献18

  • 1陈小民,蒋兴舟,李鸿.基于HRR的地面雷达目标识别方法研究[J].现代雷达,2004,26(12):49-52. 被引量:5
  • 2.大气监测自动化系统工程一期工程初步设计[M].中国气象局总体规划研究设计室,2002..
  • 3.C波段新一代全相干多普勒天气雷达[M].国营第七八四厂,2000..
  • 4ESR-88D教程.中国气象局培训中心科学技术培训部[M].,2000..
  • 5闫锦 黄培康.高距离分辨像雷达目标识别[A].中国宇航学会无人飞行器分会电磁信息技术编写组.电磁信息技术(第一届学术年会论文集)[C].上海: 中国宇航学会,2004..
  • 6Kyung T K. Efficient radar target recognition using the MUSIC algorithm and invariant features. IEEE A.P., 2002,50(3):325-337.
  • 7VladimirN. V著.张学工译.统计学习的本质[M].北京:清华大学出版社,2000..
  • 8NelloCristianini著 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 9Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag, 1995.
  • 10VladimirN.V著.张学工译.统计学习的本质[M].北京:清华大学出版社,2000..

共引文献42

同被引文献18

引证文献3

二级引证文献2

;
使用帮助 返回顶部