期刊文献+

主理想整环上保对称矩阵群逆的线性算子 被引量:1

Linear operator on group inverses of symmetric matrices over principal ideal domain
下载PDF
导出
摘要 广义逆在数值分析、数理统计、测量学和最优化等领域具有广泛重要的应用,尤其是在最小二乘问题,病态线性、非线性问题,不适定问题,回归、分布估计、马尔可夫链等统计问题,随机规划问题,控制论和系统识别问题等等研究中,广义逆更是发挥着重要的作用.线性保持问题不仅在数学理论研究中有重要应用,而且在量子力学、微分几何、系统控制、数理统计等领域有着广泛的实际应用背景.随着对广义逆和线性保持问题的深入研究,使得广义逆的保持问题有着广泛的实际应用前景.在文中,R是一个特征为2的可交换的主理想整环,至少有4个单位.利用刻画基底的形式证明了主理想整环上保持对称矩阵群逆的可逆线性算子的形式. Generalized inverses are widely applied in the fields of numerical analysis, mathematical statislics, surveying and optimization. They play a particularly important role in statistical problems such as least square, morbidity linearity, non-linearity, ill-posed property, regression, estimation of distribution, Markov chains, stochastic programming, cybernetics, and system identification. The linear preserver problem not only has important applications in theoretical mathematics, but also has extensive applications in the fields of quantum mechanics, differential geometry, system control, mathematical statistics and so on. Along with further research on linear preservers and generalized inverses, the linear preserver of the generalized inverse has many potential applications. In this paper, let R be a PID(principal ideal domain), ch= 2, has at least four units. Using the formal method of characterizing the images about bases of space, it is proved that f is the invertible linear operator from Sn (R) into Sn (R) preserving group inverses of symmetric matrices, if and only if there exists.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第8期942-946,共5页 Journal of Harbin Engineering University
基金 哈尔滨工程大学基础研究基金资助项目(HEUF04019)
关键词 主理想整环 线性算子 群逆 对称矩阵 principal ideal domain linear operator group inverses symmetric matrices
  • 相关文献

参考文献11

  • 1FUNG H K.Linear preservers of controllability and/ or observability[J].Linear Algebra and Its Aplications,1996,246:335-360.
  • 2MEHRMANN V,KRAUSE G.Linear transformations which leave controllable mutliinput descriptor systems controllable[J].Linear Algebra Appl,1989,120:47-64.
  • 3LI C K,TSING N K.Linear preserver problem:A brief introduction and some special techniques[J].Linear Algebra Appl,1992,162-164:217-235.
  • 4CAO C G,ZHANG X.Linear preservers between matrix modules over connected commutative rings[J].Linear Algebra Appl,2005,397:355-366.
  • 5LIU S W.Linear maps preserving idempotence on matrices modules over principal ideal domains[J].Linear Algebra Appl,1997,258:219-231.
  • 6郝立丽,曹重光.保矩阵群逆的线性算子[J].黑龙江大学自然科学学报,2003,20(2):32-34. 被引量:9
  • 7BU Changjiang.Linear maps preserving Drazin inverses of matrices over fields[J].Linear Algebra and its Appl,2005,396:159-173.
  • 8ZHANG X,CAO C G,BU C J.Additive maps preserving M-P inverses of matrices over fields[J].Linear and Multilinear Algebra,1999:46:199-211.
  • 9ZHANG X.Linear maps preserving (1,2)-inverses of matrices on symmetric matrix algebras over fields of characteristic not 2[J].JP Journal of Algebra,Number Theory and Appl,2003,3(2):327-336.
  • 10卜长江,曹重光.域上矩阵群逆的加法保持映射[J].Journal of Mathematical Research and Exposition,2004,24(3):503-507. 被引量:6

二级参考文献11

  • 1张显 曹重光.保不变量的矩阵加群同态[M].哈尔滨:哈尔滨出版社,2001..
  • 2冯克勤.交换代数基础[M].北京:高等教育出版社,1985..
  • 3LI C K, TSING N K. Linear preserver problems: a brief introduction and Some special techniques [J].Linear Algebra Appl. , 1992, 162-164: 217-235.
  • 4OMLADIC M, SEMRL P. Spectrum-preserving additive maps [J]. Linear Algebra Appl., 1991, 153:67-72.
  • 5OLADIC M, SEMRL P. Additive mappings preserving operators of rank one [J]. Linear Algebra Appl., 1993, 182: 239-256.
  • 6CAO Chong-guang, ZHANG Xian. Additive operators preserving idempotente matrices over fields and applications [J]. Linear Algebra Appl. , 1996, 248: 327-338.
  • 7ZHANG Xian, CAO Chong-guang, BU Chang-jiang. Additive maps preserving M-P inverses of matrics over fields [J]. Linear. Multilinear Algebra, 1999, 46: 199-211.
  • 8BELL J, SOUROUR A R. Additive rank-one mapping on triangular matrix algebras [J]. Linear Algebra Appl. , 2000, 312: 13-33.
  • 9刘玉,张显.保矩阵M-P逆的线性算子[J].南昌大学学报(理科版),1997,21(4):364-368. 被引量:9
  • 10张显.主理想整环上保对合矩阵的线性映射[J].数学杂志,2001,21(4):421-424. 被引量:3

共引文献9

同被引文献11

  • 1卜长江.关于体上分块矩阵的群逆[J].数学杂志,2006,26(1):49-52. 被引量:4
  • 2庄瓦金.任意体上矩阵对合函数与广义逆.东北数学,1987,1:57-65.
  • 3GOLUB G H, GREIF C. On solving block-structured indefinite linear systems [ J]. SIAM J Sci Comput, 2003, 24: 2076 -2092.
  • 4IPSEN I C F. A note on preconditioning nonsymmetric matrice [J]. SIAM J Sci Comput, 2001,23: 1050-1051.
  • 5CAMPELL S L, MEYER C D. Generalized inverses of linear transformations [M]. New York: Dover, 1991.
  • 6WANG Guorong, WEI Yimin. Generalized inverse theory and computation [ M]. Beijing/: Science Press, 2004.
  • 7WEI Yimin. Expressions for the Drazin inverse of 2 × 2 block matrix [ J]. Linear and Multilinear Algebra, 1998, 45 : 131-146.
  • 8CASTRO-GONZALEZ N, DOPAZO E. Representation of the Drazin inverse for a class of block matrices [J]. Linear Algebra Appl, 2005,400: 253-269.
  • 9LI Xiezhang, WEI Yimin. A note on the representations for the Drazin inverse of 2 × 2 block matrices[ J]. Linear Algebra Appl,2007,423 : 332-338.
  • 10TUCKER A. Applied combinatorics [ M]. New York: John Wiley & Sons, 1984.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部