期刊文献+

蒙特卡罗粒子滤波算法应用研究 被引量:13

Study the Application of Monte Carlo Particle Filter Algorithms
下载PDF
导出
摘要 随着这些年计算机硬件水平的发展,计算速度的提高,源自序列蒙特卡罗方法的蒙特卡罗粒子滤波方法的应用研究又重新活跃起来。本文的这种蒙特卡罗粒子滤波算法是利用序列重要性采样的概念,用一系列离散的带权重随机样本近似相应的概率密度函数。由于粒子滤波方法没有像广义卡尔曼滤波方法那样对非线性系统做线性化的近似,所以在非线性状态估计方面比广义卡尔曼滤波更有优势。在很多方面的应用已经逐渐有替代广义卡尔曼滤波的趋势。 As the computer hardware developing and the fast advances of computers in the last several years, Monte Carlo particle filter algorithms, which origin from Monte Carlo methods, have become popular again. The Monte Carlo particle filter algorithms in this paper use the concepts of sequential importance sampling. The base idea of particle filter is the approximation of relevant probability distributions using a set of discrete random samples with associated weights. The particle filter is a powerful nonlinear estimation method and has been shown to be a superior alternative to the EKF in a variety of applications, because Particle Filter does not involve the linearization approximating of nonlinear systems, that is required by the EKF.
出处 《微计算机信息》 北大核心 2007年第01S期295-297,共3页 Control & Automation
基金 船舶工业国防科技应用 基础研究基金
关键词 非线性 广义卡尔曼滤波 粒子滤波 蒙特卡罗算法 nonlinear,extended Kalman filter,particle filter,Monte Carlo algorithms
  • 相关文献

参考文献11

  • 1Sorenson H W.Kalman Filtering:Theory and Applications[M].IEEE Press,New York,1985.23-25.
  • 2J.E.Handschin and D.Q.Mayne.Monte Carlo simulation techniques to estimation the conditional expectation in multi-stage non-linear filtering[J].Estimation.Int.J.Control,1969.9(5):547-559.
  • 3V.Kadirkamanathan,P.Li,M.H.Jaward,S.G.Fabri.A Sequential Monte Carlo Filtering Approach to Fault Detection and Isolation in Nonlinear Systems[A].Proceedings of the 39th IEEE Conference on Decision and Control 2000.Australia,December 2000.4341-4346.
  • 4A.Doucet,S.Godsill and C.Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10:197-208.
  • 5张鹏,王金城.自适应滤波算法的神经网络实现[J].微计算机信息,2003,19(7):1-1. 被引量:6
  • 6N.J.Gordon,D.J.Salmond,A.F.M.Smith.Novel approach to nonlinear non-Gaussian Bayesian state estimation[J].IEE Proc.Radar,Sonar and Navig,1993,140:107-113.
  • 7Arnaud.Doucet,Simon.Godsill,Christophe.Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering,Statistics and Computing[A].ISSN:0960-3174,July 2000,10(3):197-208.
  • 8Van der Merwe R.,Doucet A.,de Freitas N.and Wan E.The Unscented Particle Filter[R].Technical report CUED/F-INFENG/TR 380,Cambridge University Department of Engineering,May 2000.
  • 9Nando de Freitas.Rao-Blackwellised Particle Filtering for Fault Diagnosis[J].IEEE Aerospace,2002.
  • 10M.Sanjeev Arulampalam,Simon Maskell,Neil Gordon,and Tim Clapp.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing.February 2002,50(2):174-188.

共引文献5

同被引文献102

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部