期刊文献+

基于规则兴趣度的关联分类 被引量:3

Associative classification based on interestingness of rules
下载PDF
导出
摘要 关联分类具有较高的分类精度和较强的适应性,然而由于分类器是由一组高置信度的规则构成,有时会存在过度拟合问题。提出了基于规则兴趣度的关联分类(ACIR)。它扩展了TD-FP-growth算法,使之有效地挖掘训练集,产生满足最小支持度和最小置信度的有趣的规则。通过剪枝选择一个小规则集构造分类器。在规则剪枝过程中,采用规则兴趣度来评价规则的质量,综合考虑规则的预测精度和规则中项的兴趣度。实验结果表明该方法在分类精度上优于See5、CBA和CMAR,并且具有较好的可理解性和扩展性。 Associative classification has high classification accuracy and strong flexibility.However,it still suffers from overfitting since the classification is based on high confidence rules.This paper has proposed a new Associative Classification based on Interestingness of Rules(ACIR).ACIR extends TD-FP-growth to mine interesting rules with min-support and min-confidence,prunes rules and selects a small rule set to build the classifier.ACIR evaluates rules based on interestingness of rules which includes predictive accuracy and interestingness of the rule items.Experimental results show that ACIR has better classification accuracy in comparison with SeeS,CBA and CMAR and are highly comprehensible and scalable.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第25期168-171,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60473045 No.60573069) 。
关键词 数据挖掘 关联分类 类关联规则 规则兴趣度 data mining associative classification class association rules interestingness of rules
  • 相关文献

参考文献13

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc of the ACM-SIGMOD 1993 Int Conf on Management of Data (SIGMOD'93).Washington D C,1993:207-216.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proc of the 18th Int Conf on Very Large Data Bases(VLDB'94).Santiago Chile,1994:487-499.
  • 3Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proc of the ACM-SIGMOD 2000 Int Conf on Management of Data(SIGMOD'00).Dallas,2000:1-12.
  • 4Liu B,Hsu W,Ma Y.Integrating classification and association rule mining[C]//Proc of 1998 Int Conf on Knowledge Discovery and Data Mining(KDD' 98).New York,1998-08:80-86.
  • 5Wang K,Zhou S,He Y.Growing decision tree on support-less association rules[C]//Proc of 2000 Int Conf on Knowledge Discovery and Data Mining(KDD' 00).Boston,2000-08:256-269.
  • 6Li W,Han J,Pei J.CMAR:accurate and efficient classification based on multiple class-association rules[C]//Proc of 2001 IEEE Int Conf on Data Mining(ICDM'01).San Jose CA,2001-11:369-376.
  • 7Wang J,Karypis G.HARMONY:efficiently mining the best rules for classification[C]//Proc of 2005 SIAM IntConfon Data Mining(SDM'05).Califomia,USA,2005-04.
  • 8Li J,Dong G,Ramamohanarao K,et al.DeEPs:a new instance-based lazy discovery and classification system[J].Machine Learning,2004,54:99-124.
  • 9Veloso A,Meira W,Zaki M J.Lazy association classification[C]//Proc of 2006 IEEE Int Conf on Data Mining(ICDM'06).Hong Kong,2006-10:645-654.
  • 10Wang K,Tang L,Han J.Top down FP-growth for association rule mining[C]//Proc of 6th Pacific Area Conference on Knowledge Discovery and Data Mining(PAKDD'02).Taipei,2002-05:334-340.

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部