期刊文献+

温度荷载作用下大跨度桥梁与无砟道岔相互作用研究 被引量:7

Study on the interaction between long span bridge and ballastless turnout under temperature force
下载PDF
导出
摘要 将道岔、轨道板、梁体和墩台视为一个相互耦合的系统,建立了计算温度荷载作用下桥梁与无砟道岔相互作用的有限元力学模型。根据变分原理和形成矩阵的"对号入座"法则建立了模型求解的非线性方程组。研究了大跨度桥梁上铺设无砟道岔时,钢轨与墩台温度力与位移的规律。计算结果表明:无砟道岔铺设于大跨度桥梁上时,必须设置钢轨伸缩调节器;无砟道岔铺设于连续梁桥上并设置钢轨伸缩调节器时,岔区内钢轨位移增大;采用连续刚构桥,有利于减小岔区内钢轨位移。 Turnout, slab, beam, pier and abutment were considered as an integrated system. A finite element mechanics model was established which can calculate the interaction between bridge and ballastless turnout under temperature force. The nonlinear equation sets of the model were established according to the variational principle and the "set - in - right- position" rule for formulating matrix. The law of temperature force and displacement of rail and pier/abutment were studied when ballastless turnout was laid on long span bridge. The numerical examples show that the expansion joint must be installed when ballastless turnout is laid on long span bridge. The displacement of rail increases when ballastless turnout is laid on continuous bridge with the expansion joint being installed. The displacement of rail can decrease if ballastless turnout is laid on continuous frame bridge.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2007年第4期11-16,共6页 Journal of Railway Science and Engineering
基金 铁道部科技开发计划项目(2004G05-A)
关键词 桥梁 无砟道岔 有限单元法 温度力 位移 bridge ballastless turnout finite element method temperature force displacement
  • 相关文献

参考文献7

二级参考文献38

  • 1王平,陈小平.桥上无缝线路钢轨断缝计算方法的研究[J].交通运输工程与信息学报,2004,2(2):47-52. 被引量:29
  • 2徐庆元,周小林,曾志平,杨小礼.Mechanics model of additional longitudinal force transmission between bridges and continuously welded rails with small resistance fasteners[J].Journal of Central South University of Technology,2004,11(3):336-339. 被引量:11
  • 3范霆 林之珉.铁路整体道床——设计施工和保养[M].北京:中国铁道出版社,1990..
  • 4曾庆元 杨平.形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法[J].铁道学报,1986,8(2).
  • 5佐佐木直树 王其昌译.板式轨道[M].北京:中国铁道出版社,1983.1-20.
  • 6潘家铮.弹性地基上的梁和框架[M].上海:上海科学技术出版社,1965..
  • 7ZENG Qing-yuan, LOU Ping, XIANG Jun. The principle of total potential energy with stationaly value in elastic system dynamics and its application to the analysis of vibration and dynamic stability[J]. Journal of Huazhong University of Science & Technology, 2002, 19(1) :7 - 14.
  • 8XIANG Jun, ZENG Qing-yuan, LOU Ping. Transverse vibration of train - bridge and train - track time - variant system and the theory of random energy analysis for train derailment[J]. Vehicle System Dynamics, 2004, 41 (2) : 129 -155.
  • 9XIANG Jun, ZENG Qing-yuan, LOU Ping. Theory. of random energy analysis for train derailment[J]. Journal of Central South University of Technology, 2003, 10 (2): 134 -139.
  • 10Popp K, Kause H, Kaiser I. Vehicle- track dynamics in the mid-frequency range[J]. VSD, 1999,(31):423-464.

共引文献279

同被引文献49

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部