期刊文献+

核k-凝聚聚类算法 被引量:7

Kernel k-aggregate clustering algorithm
下载PDF
导出
摘要 为解决k-means聚类算法和k-凝聚聚类算法对于非凸形状数据聚类正确率低和模糊核聚类算法(FKCM)收敛速度慢的问题,将k-凝聚聚类算法与核函数方法相结合,在高维特征空间构造了新的核聚类算法——核k-凝聚聚类算法,实现了k-凝聚聚类算法的核化.通过Matlab编程进行数值实验,证明了核k-凝聚聚类算法在聚类的准确性、稳定性、健壮性等方面较之k-means聚类算法、k-凝聚聚类算法和FKCM有一定程度的改进. For solving the problems that the k-means clustering algorithm and k-aggregate clustering algorithm cannot correctly cluster the non-spherical shape data, and that the convergence speed of fuzzy kernel clustering method (FKCM) is lower, a new kernel aggregate clustering algorithm -- kernel k-aggregate clustering algorithm in high dimensional feature space is introduced, which combines k-aggregate clustering algorithm with kernel function method. The data experiment using Matlab shows that the kernel k-aggregate clustering algorithm has obvious improvement in accuracy, stability and robustness of clustering compared with the k-means clustering algorithm, k-aggregate clustering algorithm and FKCM.
作者 王宇 李晓利
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第5期763-766,共4页 Journal of Dalian University of Technology
关键词 聚类 k-凝聚 kernel clustering k-aggregate
  • 相关文献

参考文献11

  • 1HAN Jia-wei,KAMBER M.Data Mining Concepts and Techniques[M].Beijing:Higher Education Press,2001.
  • 2王实,高文.数据挖掘中的聚类方法[J].计算机科学,2000,27(4):42-45. 被引量:88
  • 3JAIN A K,DUBES R C.Algorithms for Clustering Data[M].New Jersey:Prentice-Hall,Inc.,1988.
  • 4ZHANG Rong,RUDNICKY A I.A large scale clustering scheme for kernel k-means[J].Pattern Recognition,2002,4:289-292.
  • 5GIROLAMI M.Mercer kernel based clustering in feature space[J].IEEE Trans on Neural Networks,2002,13(3):780-784.
  • 6张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 7孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 8伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 9WANG Yu.An optimization approach to cluster data based on aggregate function[C]∥ Proceedings of 2004 International Conference on Management Science & Engineering.Harbin:Harbin Institute of Technology Press,2004.
  • 10李兴斯.解非线性规划的凝聚函数法[J].中国科学(A辑),1991,22(12):1283-1288. 被引量:80

二级参考文献16

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10[1]Vapnik V N. The Nature of Statistical Learning Theory. Springer Verlag New York, 1995

共引文献439

同被引文献80

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部