期刊文献+

具有最佳超收敛阶的EEP法计算格式:Ⅰ算法公式 被引量:22

A SCHEME WITH OPTIMAL ORDER OF SUPER-CONVERGENCE BASED ON EEP METHOD:Ⅰ FORMULATION
下载PDF
导出
摘要 对一维C0问题的高次有限元后处理中超收敛计算的EEP(单元能量投影)法提出改进的最佳超收敛计算格式,即用m次单元对足够光滑问题的有限元解答,采用该格式计算的任意一点的位移和应力都可以达到h2m阶的最佳超收敛结果。整个工作分为3个部分,分别给出算法公式、数值算例和数学证明。该文是系列工作的第一部分,针对高次单元提出了凝聚形函数的概念,并证明了相关的逼近定理和等价定理,在此基础上给出了具体的算法公式。 Based on the Element Energy Projection (EEP) method, the present paper presents, for onedimensional Co FEM, an improved scheme with optimal order of super-convergence, i.e., FEM sulotions can be obtained through the scheme for the elements with sufficient smooth property and m degrees. The proposed scheme is capable of producing O(h^2m) super-convergence for both displacements and stresses at any point on an element in post-processing stage. To achieve that, the concept of condensed shape functions was developed and the associated theorems of approximation and equivalence were proved. The whole work consists of three parts, i.e., formulation, numerical results and mathematical analysis. The present paper is the first in the series and gives the formulation of the proposed scheme.
出处 《工程力学》 EI CSCD 北大核心 2007年第10期1-5,共5页 Engineering Mechanics
基金 国家自然科学基金资助项目(50678093)
关键词 有限元 一维问题 超收敛 最佳收敛阶 单元能量投影 凝聚形函数 FEM one-dimensional problem super-convergence optimal convergence order element energy projection condensed shape functions
  • 相关文献

参考文献5

二级参考文献20

  • 1王枚,袁驷.Timoshenko梁单元超收敛结点应力的EEP法计算[J].应用数学和力学,2004,25(11):1124-1134. 被引量:19
  • 2陈传淼.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2002..
  • 3Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimator, part Ⅰ: the superconvergence patch recovery [J]. International Journal for Numerical Methods in Engineering, 1992, 33:1331-1364.
  • 4Yuan Si. From matrix displacement method to FEM: loss and recovery of stress accuracy [A]. Invited Papers,Proceedings of 1st International Conference on Structural Engineering [C], ed. Long Yuqiu, Beijing: TsinghuaUniversity Press, 1999. 134-141.
  • 5Strang G, Fix G. An analysis of the finite element method[M]. Englewood, Cliffs, N.J.: Prentice-Hall, 1973.
  • 6Tong P. Exact solution of certain problems by finite-element method [J]. AIAA Journal, 1969, (7):178-180.
  • 7袁驷.样条厚薄板通用矩形单元[J].力学学报,1984,16(4):401-407.
  • 8袁驷 王枚 袁明武 孙树立主编.有限元(线)法超收敛应力计算的新方案及其若干数值结果[A].袁明武,孙树立主编.中国计算力学大会论文集[C].北京:科学出版社,2001.43-52.
  • 9Strang G and Fix G. An analysis of the finite element method [M]. Prentice-Hall, 1973.
  • 10Douglas J, Dupont T. Galerkin approximations for the two point boundary problems using continuous, piecewise polynomial spaces [J]. Numer. Math., 1974, (22): 99-109.

共引文献64

同被引文献48

引证文献22

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部