期刊文献+

一种新的基于NGA/PCA和SVM的特征提取方法 被引量:6

Novel Feature Selection Method Based on NGA/PCA and SVM
下载PDF
导出
摘要 提出了一种使用小生境遗传算法(NGA)和主成分分析(PCA)对支持向量机(SVM)进行封装的方法来选择特征子集。该方法首先使用PCA得到特征向量,然后产生若干随机特征向量子集,从而得到新的特征空间,将所有训练样本映射到这个特征空间来训练支持向量机,再使用支持向量机的半径间隔方法对每个特征向量子集的性能进行评价,最后使用小生境遗传算法来共享适应度,以及进行选择、交叉和变异操作得到新的特征向量子集,重复这个过程直至得到最优的特征向量子集。使用UCI数据集进行了相关的实验,实验结果表明了该方法可以减少特征的数量以及提高分类正确率。 The performance of support vector machine (SVM) highly depends on feature subset, and there are some shortcomings of the classical filter approach to feature selection, The objective of this research was to optimize the feature subset, For there are some shortcomings of simple genetic algorithm, so niche genetic algorithm was introduced, The eigenvector were computed by principle component analysis (PCA), and eigenvector selection was performed by generating random collections of eigenvector, and the feature was obtained using these eigenvectors, and support vector machine was used as an evaluation of the eigenvector subset, and did the niche genetic algorithm, and some new eigenvector subset generated, and loop the above step till the stop condition satisfied. Experimentation was carried out using UCI data, and the experimental results show that the new algorithm significantly improves the classification accuracy,
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第20期4823-4826,共4页 Journal of System Simulation
基金 国家自然科学基金(60575023) 教育部博士点基金(20050359012) 安徽省自然科学基金(070412054)。
关键词 特征选择 支持向量机 主成分分析 遗传算法 小生境 feature selection support vector machine principal component analysis genetic algorithm niche
  • 相关文献

参考文献11

  • 1Vapnik V N.The Nature of Statistical Learning Theory (2nd edition)[M].New York:Springer-Verlag,1999.
  • 2Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research (S0885-6125),2003,3(1):1157-1182.
  • 3Frohlich H.Feature selection for support vector machines by means of genetic algorithm[C]// 15th IEEE.International Conference on Tools with Artificial Intelligence,Washington,DC,USA:IEEE Computer Society,2003:142-148.
  • 4Ji hoon Yang,Vasant Honavar.Feature subset selection using a genetic algorithm[J].IEEE Intelligent Systems (S0885-9000),1998,13(2):44-49.
  • 5乔立岩,彭喜元,马云彤.基于遗传算法和支持向量机的特征子集选择方法[J].电子测量与仪器学报,2006,20(1):1-5. 被引量:24
  • 6Hong Jin-Hyuka,Cho Sung-Baea.Efficient huge-scale feature selection with speciated genetic algorithm[J].Pattern Recognition Letter (S0895-7975),2006,27(2):143-150.
  • 7R Duda,P Hart,D Stork.Pattern Classification[M].New York:Wiley,2001.
  • 8Feature Selection for Computer-Aided Polyp Detection using Genetic Algorithm[C]// Proceedings of SPIE,San Diego,USA:SPIE Press,2003:102-110.
  • 9Lindsay I Smith.A tutorial on Principal Components Analysis[EB/OL].http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
  • 10张栋,蔡开元.基于遗传算法的神经网络两阶段学习方案[J].系统仿真学报,2003,15(8):1088-1090. 被引量:22

二级参考文献18

  • 1D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading, MA: Addison Wesley, 1989.
  • 2Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Program [Z]. AI Series, Springer Verlag, New York, 1994.
  • 3Liang Wang, John Yen. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter [J]. Fuzzy Sets and systems, 1999, 101: 353-362.
  • 4Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Trans. Neural Network,1994. 5: 39-53.
  • 5Ilona et al. An investigation into the application of neural networks,fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J].Nenrocomputing, 1999, 24: 37-54.
  • 6M. T. Hagan, M. B. Menhaj. Training feedforward networks with the Marquardt algorithm [J]. IEEE Trans. Neural Notworks, 1994, 5:989-993.
  • 7D. Nguyen, B. Widrow. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights [J].in Int. Joint Conf. Neural Networks, 1990, 3: 21-26.
  • 8M.Dash,H.Liu,"Feature selection for classification",Intelligent Data Analysis,:pp.131-156,1997(3).
  • 9Lior Wolf,Amnon Shashua,"Feature Selection for Unsupervised and Supervised Inference:the Emergence of Sparsity in a Weighted-based Approach",Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set.
  • 10R.Kohavi,G.H.John,"Wrappers for Feature Subset Selection",Artificial Intelligence 97,pp.273-324,1997.

共引文献44

同被引文献66

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部