期刊文献+

数字图像修复技术综述 被引量:160

A Survey on Digital Image Inpainting
下载PDF
导出
摘要 图像修复是图像复原研究中的一个重要内容,它的目的是根据图像现有的信息来自动恢复丢失的信息,其可以用于旧照片中丢失信息的恢复、视频文字去除以及视频错误隐藏等。为了使人们对该技术有个概略了解,在对目前有关数字图像修复技术的文献进行理解和综合的基础上,首先通过对数字图像修复问题的描述,揭示了数字图像修复的数学背景;接着分别介绍了以下两类图像修复技术:一类是基于几何图像模型的图像修补(inpainting)技术,该技术特别适用于修补图像中的小尺度缺损;另一类是基于纹理合成的图像补全(comp letion)技术,该技术对于填充图像中大的丢失块有较好的效果;然后给出了这两类方法的应用实例;最后基于对数字图像修复问题的理解,提出了对数字图像修复技术的一些展望。 Image inpainting is an important research topic in the area of image restoration. Its objective is to restore the lost information according to around image information, which can he used to restore old photo, remove text and conceal errors in videos. Based on many literatures of digital image inpainting, this paper attempts to make an overview of digital image inpainting. First, it describes image inpainting from mathematics background. Then two kinds of important image inpainting schemes are introduced in this paper: one is image inpainting based on the geometric image models; the other is image completion based on texture synthesis. The former is suitable to inpaint the small scale scratches in images and the latter is very good at completing the large objects. Then this paper demonstrates the applications of the two kinds of methods. At the end, the future trend of digital image inpainting is pointed out in personal opinion.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第1期1-10,共10页 Journal of Image and Graphics
关键词 图像复原 图像修补 图像补全 变分方法 偏微分方程 全变分 纹理合成 image restoration, image inpainting, image completion, variational method, partial differential equation (PDE), total variation, texture synthesis
  • 相关文献

参考文献33

  • 1王树根,郑精灵.基于纹理匹配的影像缺损信息填充方法[J].测绘通报,2004(12):21-23. 被引量:11
  • 2Bertalmio M,Sapiro G,Caselles V,et al.Image inpainting[A].In:Proceedings of International Conference on Computer Graphics and Interactive Techniques[C],New Orleans,Louisiana,USA,2000:417 -424.
  • 3Chan T F,Shen J H.Non-texture inpainting by curvature-driven diffusions (CDD)[J].Journal of Visual Communication and Image Representation,2001,12(4):436 -449.
  • 4Chan T F,Shen J H.Mathematical models for local non-texture inpainting[J].SIAM Journal of Applied Mathematics,2001,62(3):1019 -1043.
  • 5Chan T F,Kang S H,Shen J H.Euler's elastica and curvature based inpainting[J].SIAM Journal of Applied Mathematics,2002,63 (2):564 - 592.
  • 6Tsai A,Yezzi J A,Willsky A S.Curve evolution implementation of the Mumford-Shah functional for image segmentation,denoising,interpolation and magnification[J].IEEE Transactions on Image Processing,2001,10(8):1169 - 1186.
  • 7Esedoglu S,Shen J H.Digital inpainting based on the Mumford-Shah-Euler image model[J].European Journal on Applied Mathematics,2002,13(4):353 - 370.
  • 8Bertalmio M,Vese L,Sapiro G,et al.Simultaneous texture and structure image inpainting[J].IEEE Transactions on Image Processing,2003,12 (8):882 - 889.
  • 9Efros A A,Leung T K.Texture synthesis by non-parametric sampling[A].In:Proceedings of the IEEE Computer Society International Conference on Computer Vision[C],Washington DC,USA,1999,2:1033 - 1038.
  • 10Harald G.A combined PDE and texture synthesis approach to inpainting[A].In:Proceedings of 8th European Conference on Computer Vision[C],Prague,Czech Republic,2004,2:214 -224.

二级参考文献5

  • 1RANE S D, SAPIRO G, BERTALMIO M. Structure and Texture Filling-in of Missing Image Block in Wireless Transmission and Compression Applications [EB/OL]. Http://www. Math. Ucla. Edu, 2001.
  • 2BERTALMIO M, VESE L, SAPIRO G, et al. Simultaneous Structure and Texture Image Inpainting[EB/OL].http://www. Math. Ucla. Edu, 2001.
  • 3RUDIN L, OSHER S, FATEMI E. Nonlinear Total Variation Based Noise Removal Algorithms[J]. Physica D, 1992,60.
  • 4陈武凡,李超,陈和晏.空域中退化图像恢复的有效算法[J].计算机学报,1999,22(12):1267-1271. 被引量:19
  • 5王学良,黄廉卿.改进的局部最大熵图象恢复方法[J].中国图象图形学报(A辑),2000,5(7):589-592. 被引量:5

共引文献38

同被引文献1104

引证文献160

二级引证文献532

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部