期刊文献+

基于自适应UKF的BP神经网络及其在高程拟合中的应用 被引量:1

The application of BP neural network based on UKF height fitting
下载PDF
导出
摘要 针对BP神经网络收敛速度慢、容易陷入局部极小值点和泛化能力差等问题,基于自适应Kalman滤波理论,提出一种自适应非线性滤波(UKF)训练BP神经网络的方法。该方法采用Kalman滤波框架,引入自适应因子,对神经网络的连接权进行训练,提高了神经网络的学习质量。高程异常拟合算例表明,基于自适应UKF的BP神经网络比标准BP神经网络收敛速度快,泛化能力强,从而证明了该方法是一种有效的连接权训练方法。 BP neural network based on adaptive UKF is introduced in this paper for the standard BP neural network has slow converges,local minimum value and weak generalization ability.It can train weight of BP and improve the efficiency of BP without linearization by using the frame of Kalman filters and adaptive factor to adjust the variance of dynamic model.In the height fitting,BP based on UKF has quicker converges and stronger generalization ability than the standard BP.So it shows that BP neural network based on adaptive UKF is a kind of efficient neural network.
出处 《测绘科学》 CSCD 北大核心 2007年第6期120-122,共3页 Science of Surveying and Mapping
基金 信阳师范学院青年骨干教师资助计划 交通部科技项目(200531881203) 武汉大学地球空间环境与大地测量教育部重点实验室测绘基础研究基金(1469990324233-04-02)
关键词 BP神经网络 非线性滤波(UKF) UT变换 自适应因子 泛化能力 BP neural network unscented Kalman filter unscented transformation adaptive factor generalization ability
  • 相关文献

参考文献19

二级参考文献42

  • 1张友民,戴冠中,张洪才.基于SVD的推广卡尔曼滤波及其在飞行状态和参数估计中的应用[J].控制理论与应用,1996,13(1):106-114. 被引量:7
  • 2张立明.人工神经网络的模型及其应用[M].复旦大学出版社,1992..
  • 3张翔 丁晶.神经网络多变量洪水分类预报模型.神经网络理论与应用研究'96[M].成都:西南交通大学出版社,1995.717-720.
  • 4杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997,14(2):79-84.
  • 5Chowdhury F N.A Neural approach to Data Fusion[A].Proc.American control Conf[C].USA:Seattle,WA,1995.1693-1697.
  • 6Simon Haykin.Neural Networks:A Comprehensive Foundation[M].2nd Edition.USA:Prentice Hall PTR.1998.
  • 7S J Julier,J K Uhlmann.A new Extension of the Kalman filter to Nonlinear Systems[A].In Proceedings of the SPIE Aero sense International Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,Florida:April,1997.20-25.
  • 8E Awan,A T Nelson.Neural dual extended Kalman Filtering:applications in speech enhancement and monaural blind signal separation.In Proc of IEEE Workshop on Neural Networks for Signal Processing VII[C].Florida:September 1997.
  • 9S J Julier.The scaled unscented transformation[J].In Proceedings of American Control Conference,Anchorage,AK,USA,May 2002,6:4555-4559.
  • 10J K Uhlmann.Algorithms for multiple target tracking[J].American Scientist,1992,80(2):128-141.

共引文献152

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部