期刊文献+

基于改进概率栅格分解的路径规划算法 被引量:7

Path Planning Based on Improved Probabilistic Cell Decomposition
下载PDF
导出
摘要 栅格分解法是目前研究最广泛的路径规划方法之一,但随着机器人自由度增加会出现"维数灾难"问题,不太适合于解决高自由度机器人在复杂环境中的路径规划。该文提出了基于改进概率栅格分解的路径规划算法,将随机采样应用到栅格分解算法中,虽然不能保证算法的最优性,却极大地提高了算法的效率,使其适合于解决高自由度机器人在复杂环境下的路径规划问题。仿真试验表明该算法可以在较短时间内获得可通行的路径。 The path planning based on cell decomposition is one of the most popularly studied methods. There is a problem called dimension curse with the dimension of robot freedom increasing, so it disagrees with solving the problem of path planning for high-dimensional robot in complex environment. Therefore, this paper presents an algorithm of path planning based on improved probabilistic cell decomposition. The path constructed by this algorithm is not the best, because probabilistic sampling is introduced in the algorithm. But the efficiency of the algorithm is improved owing to probabilistic sampling, so it is adapted to solve the problem of path planning for the complex environment. Simulation shows improved that this algorithm can quickly find a feasible path.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第21期160-162,165,共4页 Computer Engineering
关键词 概率栅格分解 路径规划 移动机器人 probabilistic cell decomposition: path planning mobile robot
  • 引文网络
  • 相关文献

参考文献3

  • 1刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:75
  • 2Lozano-Perez T,Wesley M A.An Algorithm for Planning Collision-free Paths among Polyhedral Obstacles[J].Communications of the ACM,1979,22(10):560-570.
  • 3LaValle S M.Rapidly-exploring Random Trees:A New Tool for Path Planning[R].Computer Science Dept.,Iowa State University,TR:98-11,1998.

二级参考文献71

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2刘成良,张凯,付庄,曹其新,殷跃红.神经网络在机器人路径规划中的应用研究[J].机器人,2001,23(S1):605-608. 被引量:11
  • 3DeSouza G N,Kak A C.Vision for mobile robot navigation:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (2):237-267.
  • 4Urmson C,Anhalt J,Clark M,et al.High Speed Navigation of Unrehearsed Terrain-Red Team Technology for Grand Challenge[R].CMU-RI-TR-04-37,The Robotics Institute,Carnegie Mellon University,2004.
  • 5Volpe R,Baumgatner E,Schenker P,Hayati S.Technology development and testing for enhanced mars rover sample return operations[A].Proc IEEE Aerospace Conference[C].2000.
  • 6Leonard J,Durrant-Whyte H F.Mobile robot localization by tracking geometric beacons[J].IEEE transaction on robotics and automation,1991,7 (3):376-38.
  • 7Nilsson N J.Shakey the robot[R].Technical Report TR223,SRI International,1984.
  • 8Lozano-Perez T,Wesley M A.An algorithm for planning collision-free paths among polyhedral obstacles[J].Communications of the ACM,1979,22 (10):'560- 570.
  • 9Laumond J P,Sekhavat S,Lamiraux F,Guidelines in Nonholonomic Motion Planning for Mobile Robots[M].Lectures Notes in Control and Information Sciences 229,Springer,1998.
  • 10Niku S B,孙富春,朱纪洪,刘国栋译.机器人学导论:分析、系统及应用[M].北京:电子工业出版社,2004..

共引文献74

同被引文献66

引证文献7

二级引证文献29

;
使用帮助 返回顶部