期刊文献+

基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例 被引量:113

Object-oriented Urban Land-cover Classification of Multi-scale Image Segmentation Method——a Case Study in Kuala Lumpur City Center,Malaysia
下载PDF
导出
摘要 城市受人类活动影响比较大,结构组成比较复杂,对该区域进行分类研究存在一些问题。甚高分辨率遥感影像,以其丰富的细节信息为城市土地覆被分类研究提供了可能。本文结合使用甚高分辨率Qu ickB ird遥感影像和激光扫描LIDAR数据,论述了利用多尺度、多变量影像分割的面向对象的分类技术对马来西亚基隆坡市城市中心区的土地覆被分类研究。针对特定地物选择合适的影像分割特征和分割尺度、按照合理的提取顺序逐步进行城市土地覆被信息提取。在建筑物的提取过程中构建了归一化数字表面模型nDSM,使用成员函数将建筑物信息提取出来。精度评价结果表明,利用该方法得到了理想的城市土地覆被分类结果,其分类总精度从常规面向对象分类方法的83.04%上升到88.52%,其中建筑物生产精度从60.27%增加到93.91%。 Urban land cover classification is not easy for its inner complexity resulting from human' s impact. The emergency of very high resolution remote sensing images makes it possible to classify the urban land cover for its ample details. The paper is about urban land cover classification method using multi-scale and multi- variable image segmentation method. The innovation of this method lies in selection of proper scale parameter resulting from proper image data and certain classification order. Normalized Digital Surface Model(nDSM) is constructed in the process of building extraction; the threshold of elevation difference is used to extract building. Accuracy assessment result indicates that the ideal urban land cover classification results have been obtained using this method. The total accuracy has increased from 83.04% to 88.52% compared with traditional object oriented classification result. The product accuracy of building increases from 60.27% to 93.91% , which is the highest among all the six objects.
出处 《遥感学报》 EI CSCD 北大核心 2007年第4期521-530,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:40671122 40671130)
关键词 多尺度分割 面向对象 甚高分辨率遥感影像 LIDAR数据 nDSM multi-scale segmentation object-oriented classification very high resolution imagery LIDAR data nDSM
  • 相关文献

参考文献23

  • 1孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J].农业工程学报,2002,18(2):160-164. 被引量:78
  • 2Wilkinson G G.Recent Development in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques[A].Machine Vision and Advanced Image Processing in Remote Sensing[C].1999.
  • 3程承旗,马廷.高分辨率卫星影像上地物线性特征的自动识别[J].遥感学报,2003,7(1):26-30. 被引量:35
  • 4Blaschke T,Lang S,Lorup E,et al.Object-oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications[A].Cremers A,Greve K(Hrsg.).Umwelt Information for Planning,Politikund Offent Lichkeit[C].Environmental Information for Panning,Politics and the Public Metropolis Verlag,Marburg,2000,2:555-570.
  • 5Mauro C,Eufem ia T.Accuracy Assessment of Per-field Classification Integrating very Fine Spatial Resolution Satellite Imagery with Topographic Data[J].Journal of Geo spatial Engineering,2001,3(2):127-134.
  • 6Benz U C,Hofmann P,Illhauck W G,et al.Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,58:239-258.
  • 7Lobo A,Chic O,Casterad A.Classification of Mediterranean Crops with Multi-sensor Data:Per-pixel Versus Per-object Statistics and Image Segmentation[J].International Journal of Remote Sensing,1996,17:2358-2400.
  • 8Aplin P,Tkinson A P,Curran P.Per-field Classification of Land Use Using the Forthcoming very Fine Resolution Satellite Sensors:Problems and Potential Solutions[A].Advances in Remote Sensing and GIS Analysis[C].Chichester:Wiley and Son,1999.
  • 9黄慧萍,吴炳方,李苗苗,周为峰,王忠武.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74. 被引量:127
  • 10Hellwich O,Wiedemann C.Object Extraction from High-resolution Multi-sensor Image Data[A].The 3rd International Conference on Fusion of Earth Data[C].Sophia Antipolis,France,SEEGreCA,Nice,2000.

二级参考文献33

  • 1朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4..
  • 2郭华东.多源遥感技术探测地质矿产资源的研究.中国新疆北部遥感找矿方法与实践[M].北京:科技出版社,1995.1-23.
  • 3[1]Franklin S E,Peddle D R.Spectral texture for improved class discrimination in complex terrain[J].Int J Remote Sens,1989,10(8):1437~1443.
  • 4[2]Franklin S E,Peddle D R.Classification of SPOT HRV imagery and textures[J].Int J Remote Sens,1990,11(3):551~556.
  • 5[3]Marceau D J,Howaeth P J,Dubois J M,et al.Evaluation of the gray-level co-occurrence matrix method for land-cover classification using SPOT imagery[J].IEEE Trans Geosci Rmote Sens,1990,28(4):513~518.
  • 6[4]Aplin P,Atkinson P M,Curran P J.Using the spectral properties of fine spatial resolution satellite sensor imagery for national land cover and land use mapping[A].In: Guyot G,Phulpin,T.(Eds.),1997,Physical measurements and signatures in remote sensing[C].Balkema,Rotterdam,661~668.
  • 7[5]Pedley M I,Curran P J.Per-field classification: an example using SPOT HRV imagery[J].Int J Remote Sens,1991,12:2181~2192.
  • 8[6]Ferrante R D,Carlotto J M.Multi-spectral image analysis system[A].Proceedings of the first conference on artificial intelligence application[C].Denever,1984,357~363.
  • 9[7]Wharton S W.A spectral-knowledge-based approach for urban land cover discrimination[J].IEEE Trans on Geoscience and Remote Sensing ,1987,3:272~283.
  • 10[8]Ton J,Sticklen J,Jain A A.Knowledge-based segmentation of Landsat images[J].IEEE Trans on Geoscience and Remote Sensing,1991,2:222~232.

共引文献251

同被引文献1420

引证文献113

二级引证文献1105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部