期刊文献+

一类非线性差分方程平衡解的稳定性及二周期解的存在性 被引量:3

The Stability of Equilibrium Solutions and the Existence of 2-Periodic Solutions for a Class of Nonlinear Difference Equation
下载PDF
导出
摘要 研究了非线性差分方程xn+1=(xnxn-1+xn-2+α)/(xn-1+xnxn-2+β),n=1,2,3,…的正平衡解存在性及渐近稳定性,并对其二周期解的存在性进行了探讨,其中α,β∈[0,+∞),初值x-2,x-1,x0∈(0,+∞). Abstract:In this paper we investigate the existence and the asymptotic stability of the positive equilibrium solutions to the follow-ing nonlinear difference equations xn+1=(xnxn-1+xn-2+α)/(xn-1+xnxn-2+β),n=1,2,3,…and the initial values x-2,x-1,x0∈(0,+∞).We also discuss the existence of 2-periodic solutions to the equations.
作者 包泉鳌
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期717-720,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 差分方程 渐近稳定性 正平衡解 周期解 Difference equation Asymptotic stability Positive equilibrium of equation Period solution
  • 相关文献

参考文献3

二级参考文献7

共引文献9

同被引文献16

  • 1LiXianyi,ZhuDeming.GLOBAL ASYMPTOTIC STABILITY FOR A NONLINEAR DELAY DIFFERENCE EQUATION[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(2):183-188. 被引量:7
  • 2端木连喜.二阶拟线性中立型差分方程的振动性准则[J].西南师范大学学报(自然科学版),2005,30(3):389-393. 被引量:2
  • 3张振国,李巧銮,杨宏强,刘召爽.高阶非线性不稳定型差分方程的振动性(英文)[J].西南师范大学学报(自然科学版),2006,31(1):30-33. 被引量:2
  • 4[1]A Drozdowicz,J Popenda.Asymptotic Behavior of the Second Order Difference Equation[J].Proe Amer Math Soc,1987(99):135-140.
  • 5[2]Xue-zhong He.Oscillatory and Asymptotic Behavior of the Second Order Nonlinear Difference Equations[J].J Math Anal,1993(175):482-498.
  • 6[3]S Chen,Y Zhang.Singular Boundary Value Problems On a Half-line[J].J Math Anal,1995(195):449-468.
  • 7[4]Dai Binxiang,Huang.Lihong.Asymptotic Behavior and Existence of Positive Solutions for a Neutral Difference Equations[J].Ann of Diff Eqs,1998,14(1):22-28.
  • 8[5]Zhao-wen Zheng.Oscillatory and Asymptotic Theorems for Second Order Nonlinear Differential Equations[J].Journal of Shandong University,2002,37(4):283-288.
  • 9[6]Yu-zhen Bai.Oscillatory and Asymptotic Behavior of the Solutions of Second Order Differential Equations[J].Journal of Systems Science and Mathematical Science,2001,21(4):223-234.
  • 10Agarwal R P. Difference Equations and Inequalities, TMA [ M ]. New York : Marcel Dekker, 1992.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部