期刊文献+

滑坡灾害空间预测支持向量机模型及其应用 被引量:41

Landslide susceptibility mapping using support vector machines
下载PDF
导出
摘要 随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量机进行滑坡灾害空间预测,并与Logistic回归模型进行了比较。结果表明,两类支持向量机模型优于Logistic回归模型,而Logistic回归模型优于单类支持向量机模型。 With the extensive use of GIS techniques in landslide susceptibility mapping, the development of new predictive models for landslide susceptibility mapping has been a hotspot in landslide research. In this paper, the models for landslide susceptibility mapping are first reviewed, and the principle of two-class and one-class Support Vector Machines (SVM) is then briefly introduced. Two-class and one-class SVM methods were used to assess landslide susceptibility in a selected area in a natural terrain of Hong Kong using GIS. The SVM models were developed by training dataset with cross-validation method to obtain the optimum kernel function parameters, and then applied to the study area to derive landslide susceptibility maps. The resulting maps were compared with landslide susceptibility map produced from logistic regression. It is concluded that two-class SVM is more reliable than logistic regression, and that logistic regression is accurate compared with one-class SVM.
出处 《地学前缘》 EI CAS CSCD 北大核心 2007年第6期153-159,共7页 Earth Science Frontiers
关键词 滑坡 空间预测 支持向量机 地理信息系统 landslides susceptibility mapping Support Vector Machines (SVM) GIS
  • 相关文献

参考文献19

  • 1殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘,2001,8(2):279-284. 被引量:213
  • 2丛威青,潘懋,李铁锋,吴自兴,吕广宪.基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J].地学前缘,2006,13(1):185-190. 被引量:78
  • 3Guzzetti F, Carrara A, Cardinali M, et al. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy[J]. Geomorphology, 1999, 31: 181-216.
  • 4Dai F C, Lee C F, Ngai Y Y. Landslide risk assessment and management: an overvlew[J]. Engineering Geology, 2002, 64 : 65-87.
  • 5Lee S, Ryu J H, Min K, et al. Landslide susceptibility analysis using GIS and artificial neural network[J]. Earth Surface Processes and Landforms, 2003, 28: 1361-1376.
  • 6Kanungo D P, Arora M K, Sarkar S, et al. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas[J]. Engineering Geology, 2006, 85: 347-366.
  • 7Dai F C, Lee C F. Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong[J]. Geomorphology, 2002, 42: 213-228.
  • 8Dai F C, Lee C F. A spatiotemporal probabilistie modeling of storm-induced shallow landsliding using aerial photographs and logistic regression[J]. Earth Surface Processes and Landforms, 2003, 28: 527-545.
  • 9Vapnik V. Nature of statistical learning theory[M]. New York: John Wiley and Sons, 1995.
  • 10Cristianini N, Scholkopf B. Support vector machines and kernel methods--the new generation of learning machines[J]. AI Magazine, 2002, 23: 31-41.

二级参考文献7

共引文献277

同被引文献623

引证文献41

二级引证文献778

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部