摘要
本文给出C^n中单位多圆柱上和复Banach空间中单位球上的准凸映照(含A型准凸映照和B型准凸映照)f齐次展开式的精细估计,其中x=0是f(x)-x的k+1阶零点.同时,还讨论了复Banach空间单位球上准凸映照的构造,它为准凸映照齐次展开式的精细估计提供极值映照.
In this paper, we give the refining estimation of homogeneous expansion for f, where f is a quasi-convex mapping (include quasi-convex mapping of type A and quasi-convex mapping of type B) defined on the open unit polydisk in Cn or the open unit ball in a complex Banach space, and x = 0 is the zero of order k + 1 of ](x) - x. In addition to, we also discuss the construction of quasi-convex mappings on the unit ball in a complex Banach space, it provides extremal mappings for the refining estimation of homogeneous expansion for quasi-convex mappings.
出处
《数学进展》
CSCD
北大核心
2007年第6期679-685,共7页
Advances in Mathematics(China)
基金
Project supported by NSFC(No.10571164)
SRFDP of Higher Education(No.20050358052)
the Doctoral Foundation of Zhanjiang Normal University(No.Z0420).
关键词
k+1阶零点
极值映照
准凸映照
齐次展开式的精细估计
zero of order k + 1
extremal mapping
quasi-convex mapping
refining estimation of homogeneous expansion