期刊文献+

一类超二次双调和方程的无穷多解

Infinitely Poly-solutions for a Class of Superquadratic Biharmonic Equation
下载PDF
导出
摘要 利用变分方法讨论了一类超二次双调和方程的无穷多解的存在性. The existence of infinitely poly-solutions of a class of superquadratic bihannonic equation was discussed with variational approach in this thesis.
出处 《西北民族大学学报(自然科学版)》 2007年第3期1-5,共5页 Journal of Northwest Minzu University(Natural Science)
关键词 超二次 双调和方程 无穷多解 Superquadratic Biharmonic equation Infinitely poly-solutions
  • 相关文献

参考文献7

  • 1Lazer, A.C,; McKenna, P.J.,Large-amplitude periodic oscillations in suspension bridges:Some new connections with nonlinear analysis, SIAM Rev. 1990:537-578.
  • 2Xu, Guixiang; Zhang, Jihui Existence results for some fourth-order nonlinear elliptic problems of local superlinearity andsublinearity[J], J. Math. Anal. App1281(2003),633-640.
  • 3Zhang, Jihui; Li, Shujie ,Multiple nontrivial soh, tions for some fourth-order semilinear elliptic probl ems [J]. Non Iinear Ana lys is TMA, 60 (2005), 221-230.
  • 4Rabinowitz P H.,Mlinimax methods in critical point theory with applications to differential cquations, CBMS. Reg. Conf. Ser inMath. No. 65, Amer. Math. Soc. Providence, R. I, 1986.
  • 5M. Willem, Minimax Theorems[M].Birkhauser, Boston, 1996.
  • 6Struwe, M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, (1990).
  • 7P. Bartolo, V. Benci and D. Fortanato, Abstract critical point theorems and applications to some nonlinearpeoblems with strong resonance at infinity[J].Nonlinear Analysis TMA, 7(1983):981-1012.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部