期刊文献+

LSSVM增量式训练的稀疏化算法在短期负荷预测中的应用

Short-term Load Forecasting Approach Based on Imposing Sparseness upon LSSVM Incremental Training Algorithm
下载PDF
导出
摘要 最小二乘支持向量机与传统支持向量机相比在训练速度上有所提高,但当训练样本数目较大时,训练速度也相对缓慢。针对这一特点,对最小二乘支持向量机用增量式训练方法,使训练速度得到进一步提高,但是与传统支持向量机相比,丧失了解的稀疏性,影响了二次学习的效率。因此通过改进的剪枝算法对解进行了稀疏化处理,将此方法应用在电力系统短期负荷预测中,并对其预测结果与支持向量机进行分析比较,预测的准确性得到了进一步提高。 Compared with the support vector machine (SVM), the least squares support vector machine (LSSVM) can improve the computing speed. However, when the sample size is large, the training speed is also relatively slow. Considering this, LSSVM incremental training algorithm is applied to increase the training speed. Compared with SVM, it losses the sparseness of solution, which influences the efficiency of second learning. An improved pruning algorithm is introduced to impose sparseness upon the solution of LSSVM incremental learning algorithm. Through comparison and analysis of load forecasting results between this algorithm and SVM, it is shown that the accuracy of load prediction is improved.
出处 《现代电力》 2007年第6期21-24,共4页 Modern Electric Power
关键词 最小二乘支持向量机 增量式训练 短期负荷预测 剪枝算法 稀疏化 LSSVM incremental training short-term load forecasting pruning algorithm sparseness
  • 相关文献

参考文献8

二级参考文献30

  • 1张乃尧 阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1994..
  • 2VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4Suykens J A K,Gestel T Van,Brabanter J De et al. Least Squares Support Vector Machines[M].World Scientific,2002.
  • 5Suykens J A K,Lukas L,Vandewalle J.Sparse Least Squares Support Vector Machine Classifier[C].In:European Symposium on Artificial Neural Networks, Bruges Belgium, 2000-04: 37~42.
  • 6J A K Suykens,L Lukas,J Vandewalle. Sparse approximation using least squares support vector machines[C].In :IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000-05:Ⅱ757~Ⅱ760.
  • 7K Pelckmans,J A K Suykens,T Van Gestel et al.LS-SVMlab Toolbox User's Guide.http://www.esat.kuleuven.ac.be/sista/lssvmlab/,2003.
  • 8Vapnik V.N..The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 9Cherkassky V.,Mulier F..Learning From Data-Concepts,Theory and Methods.New York:John Wiley Sons,1998
  • 10Joachims T..Text Categorization with support vector machines:Learning with Many Relevant Features.In:Proceedings of the European Conference on Machine Learning (ECML),1998,137~142

共引文献311

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部