摘要
为了更确切地描述实际系统中的混沌现象,提出了一种变形蔡氏电路,它含有一个不对称非线性阻性元件。对该电路进行了深入的数学分析;并在MATLAB环境下,对其产生的混沌现象进行了仿真分析。分析结果表明:改变电路中的线性电阻值R,可以观察到直流平衡态、Hopf分岔、倍周期分岔、单涡卷混沌吸引子、周期性窗口和不对称双涡卷混沌吸引子等非线性动力学行为;混沌系统对初始条件极其敏感;不对称非线性蔡氏电路有其特殊的性质。
In order to describe the actual chaotic systems exactly, a simple modified Chua's circuit is presented, which includes an asymmetric nonlinear resistive element. Mathematical analysis is performed first, and then the simulation study is completed in MATLAB. By changing the value of linear resistor R in the circuit, dynamical behaviors are observed, such as DC equilibrium point, Hopf bifurcation, period-doubling bifurcation, single-scroll strange attractor, periodic window and asymmetric double-scroll strange attractor. The extreme sensitivity in the state trajectory with respect to the initial conditions is exhibited, and the special characteristic of the asymmetric nonlinear Chua's circuit is observed also.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2007年第12期2029-2031,共3页
Systems Engineering and Electronics
基金
国家重点基础研究发展计划(973)项目(2005CB221505)
高等学校博士学科点专项科研基金(20050248058)资助课题
关键词
不对称非线性阻性元件
蔡氏电路
混沌
asymmetric nonlinear resistive element
Chua' s circuit
chaos