期刊文献+

数据挖掘中聚类算法的新发展 被引量:50

New developments of clustering methods in data mining
下载PDF
导出
摘要 在对传统聚类方法进行简要介绍的基础上,对聚类的新发展进行了较详细的归纳,总结了聚类分类方法发展的趋势。 On the basis of the simple introduction of the traditional clustering analysis, this paper concluded the new developments of clustering method tendency.
出处 《计算机应用研究》 CSCD 北大核心 2008年第1期13-17,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60473003,60673092) 中国博士后科研基金资助项目(20060390919) 江苏省高校自然科学基金资助项目(06KJB520104) 江苏省博士后科研基金资助项目(060211C)
关键词 数据挖掘 聚类分析 聚类方法 data mining clustering analysis clustering methods
  • 相关文献

参考文献59

  • 1GUHA S,RASTOGI R,SHIM K.CURE:an efficient clustering algorithm for large databases[C]//HAAS L M,TIVARY A.Proc of ACM SIGMOD International Conference on Management of Data.Seattle:ACM Press,1998:73-84.
  • 2KRISHNA K,MURTY M N.Genetic K-means algorithm[J].IEEE Trans on System,Man,and Cybernetics:Part B,1999,29(3):433-439.
  • 3CHINRUNGRUENG C,SEQUIN C H.Optimal adaptive K-means algorithm with dynamic adjustment of learning rate[J].IEEE Trans on Neural Networks,1995,6(1):157-169.
  • 4LEE D,BACK S,SUNG K.Modified K-means algorithm for vector quantizer design[J].IEEE Signal Processing Letters,1997,4(l):2-4.
  • 5HAN Jia-wei,KAMBER M.Data mining:concepts and techniques[M].[S.l.]:Morgan Kaufmann Publishers,2001:110-121.
  • 6NGR T,HAN Jia-wei.CLARANS:a method for clustering objects for spatial data mining[J].IEEE Trans on Knowledge and Data Engineering,2002,14(5):1003-1015.
  • 7ZHANG T,RAGHU R,LIVNY M.BIRCH:an efficient data clustering method for very large databases[C]//Proc of ACM SIGMOD Int Conf.Montreal:[s.n.],1996:103-114.
  • 8KARYPIS G,HAN E,KUMAR V.Chameleon:hierarchical clustering using dynamic modeling[J].IEEE Computer,1998,32(8):68-75.
  • 9HINNEBURG K D.Optimal grid-clustering:towards breaking the curse of dimensionality in high-dimensional clustering[C]//Proc of Int Conf on Very Large Databases(VLDB'99).1999:506-517.
  • 10WANG Wei,YANG Jiong,MUNTZ R R.STING:a statistical information grid approach to spatia data mining[C]//Proc of Int Conf on Very Large Databases (VLDB'97).1997:186-195.

二级参考文献157

共引文献780

同被引文献350

引证文献50

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部