摘要
研究了一类具有非Lipschitz生成元的g-期望的Jensen不等式,利用g-期望的定义,严格单调性以及一个生成元表示定理,证明了一类非Lipschitz生成元的惟一性.对于线性凸函数φba(x)=ax+b,x∈R,定义了一个新的生成元gc(t,y,z)∶=g(t,y-c,z),利用生成元惟一性,BSDEs解的存在惟一性,证明了基于g-期望的Jensen不等式对单调增加的凸函数成立的充分必要条件是g不依赖于变量y并且g关于变量z是正齐次的.
Jensen;s inequality for g-expectation with non-Lipschitz generator was studied. Based on the definition of g-expectation, strict monotonicity and a general representation theorem for generators of BSDEs, a uniqueness theorem for g-expectation with non-Lipschitz generator was proved. For a linear convex ruction φa^b (x) = ax + b, A↓ x ∈ R, a new generator g^c(t,y,z) := g(t,y-c,z) was defined. According to the uniqueness theorem for g-expectation and the uniqueness of the solution of the BSDEs, it is proved that Jensen's inequality for g-expectation with non-Lipschitz generator holds for monotonic, increasing and convex function if and only if the generator g is independent of y and positively homogeneous with respect to z.
出处
《中国矿业大学学报》
EI
CAS
CSCD
北大核心
2008年第1期142-146,共5页
Journal of China University of Mining & Technology
基金
国家自然科学基金项目(10671205)
中国博士后科学基金项目(20060400158)
中国矿业大学博士预研基金项目