期刊文献+

非Lipschitz条件下基于g-期望的Jensen不等式 被引量:1

Jensen's Inequality for g-Expectation with Non-Lipschitz Generator
下载PDF
导出
摘要 研究了一类具有非Lipschitz生成元的g-期望的Jensen不等式,利用g-期望的定义,严格单调性以及一个生成元表示定理,证明了一类非Lipschitz生成元的惟一性.对于线性凸函数φba(x)=ax+b,x∈R,定义了一个新的生成元gc(t,y,z)∶=g(t,y-c,z),利用生成元惟一性,BSDEs解的存在惟一性,证明了基于g-期望的Jensen不等式对单调增加的凸函数成立的充分必要条件是g不依赖于变量y并且g关于变量z是正齐次的. Jensen;s inequality for g-expectation with non-Lipschitz generator was studied. Based on the definition of g-expectation, strict monotonicity and a general representation theorem for generators of BSDEs, a uniqueness theorem for g-expectation with non-Lipschitz generator was proved. For a linear convex ruction φa^b (x) = ax + b, A↓ x ∈ R, a new generator g^c(t,y,z) := g(t,y-c,z) was defined. According to the uniqueness theorem for g-expectation and the uniqueness of the solution of the BSDEs, it is proved that Jensen's inequality for g-expectation with non-Lipschitz generator holds for monotonic, increasing and convex function if and only if the generator g is independent of y and positively homogeneous with respect to z.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2008年第1期142-146,共5页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(10671205) 中国博士后科学基金项目(20060400158) 中国矿业大学博士预研基金项目
关键词 倒向随机微分方程 G-期望 JENSEN不等式 非Lipschitz生成元 backward stochastic differential equation g- expectation Jensen' s inequality non- Lipschitz generator
  • 相关文献

参考文献4

二级参考文献13

  • 1FAN Yulian.RBSDE's with jumps and the related obstacle problems for integral-partial differential equations[J].Science China Mathematics,2006,49(4):557-573. 被引量:3
  • 2JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 3[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159.
  • 4[2]Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70(2002),1403-1443.
  • 5[3]Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electon. Comm. Probab., 5(2000), 101-117.
  • 6[4]Coquet, F., Hu, Y., Memin, J. & Peng, S., Filtration consistent nonlinear expectations and related g-expectation, Probab. Theory Related Fields, 123(2002), 1-27.
  • 7[5]Chen, Z. & Peng, S., A general downcrossing inequality for g-martingales, Statistics and Probability Letters, 46(2000), 169-175.
  • 8[6]Pardoux, E. & Peng, S., Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14(1990), 55-61.
  • 9[7]Peng, S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,Stochastics, 38:2(1992), 119-134.
  • 10[8]El Karoui, N., Peng, S. & Quenez, M. C., Backward stochastic differential equations in finance, Math.Finance, 7:1(1997), 1-71.

共引文献38

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部